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ABSTRACT

Voltage instability or voltage collapse, observed in many blackout events, poses a significant
threat to power system reliability. To prevent voltage collapse, the countermeasures suggested by
the post analyses of the blackouts usually include the adoption of better online voltage stability
monitoring and control tools. Recently, the variability and uncertainty imposed by the increasing
penetration of renewable energy further magnifies this need. This work investigates the method-
ologies for online voltage stability margin (VSM) monitoring and control in the new era of smart
grid and big data. It unleashes the value of online measurements and leverages the fruitful results
in machine learning and demand response.

An online VSM monitoring approach based on local regression and adaptive database is pro-
posed. Considering the increasing variability and uncertainty of power system operation, this ap-
proach utilizes the locality of underlying pattern between VSM and reactive power reserve (RPR),
and can adapt to the changing condition of system. LASSO (Least Absolute Shrinkage and Se-
lection Operator) is tailored to solve the local regression problem so as to mitigate the curse of
dimensionality for large-scale system. Along with the VSM prediction, its prediction interval is
also estimated simultaneously in a simple but effective way, and utilized as an evidence to trigger
the database updating. IEEE 30-bus system and a 60,000-bus large system are used to test and
demonstrate the proposed approach. The results show that the proposed approach can be suc-
cessfully employed in online voltage stability monitoring for real size systems, and the adaptivity
of model and data endows the proposed approach with the advantage in the circumstances where
large and unforeseen changes of system condition are inevitable.

In case degenerative system conditions are identified, a control strategy is needed to steer
the system back to security. A model predictive control (MPC) based framework is proposed to

maintain VSM in near-real-time while minimizing the control cost. VSM is locally modeled as a
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linear function of RPRs based on the VSM monitoring tool, which convexifies the intricate VSM-
constrained optimization problem. Thermostatically controlled loads (TCLs) are utilized through a
demand response (DR) aggregator as the efficient measure to enhance voltage stability. For such an
advanced application of the energy management system (EMS), plug-and-play is a necessary feature
that makes the new controller really applicable in a cooperative operating environment. In this
work, the cooperation is realized by a predictive interface strategy, which predicts the behaviors
of relevant controllers using the simple models declared and updated by those controllers. In
particular, the customer dissatisfaction, defined as the cumulative discomfort caused by DR, is
explicitly constrained in respect of customers’ interests. This constraint maintains the applicability
of the control. IEEE 30-bus system is used to demonstrate the proposed control strategy.
Adaptivity and proactivity lie at the heart of the proposed approach. By making full use of
real-time information, the proposed approach is competent at the task of VSM monitoring and

control in a non-stationary and uncertain operating environment.
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CHAPTER 1. OVERVIEW

1.1 Introduction

1.1.1 Voltage Stability

Modern power system is more likely to be heavily stressed due to the trends of (i) large-area
network interconnection and power transfer, (ii) market-oriented deregulation, and (iii) integration
of renewable energy that is sometimes far away from load centers. As a result, power system voltage
stability, which inherently connects to the loadability of the system, became the research topic of
interest for the past several decades [1, 2, 3]. IEEE/CIGRE joint task force proposed various defi-
nitions related to power system stability including voltage stability [4]. Figure 1.1 summarizes the
classification of power system stability. In general terms, voltage stability is defined as “the ability
of a power system to maintain steady voltages at all buses in the system after being subjected to a
disturbance from a given initial operating condition. It depends on the ability to maintain/restore
equilibrium between load demand and load supply from the power system. Instability that may result
occurs in the form of a progressive fall or rise of voltages of some buses” [4].

A possible outcome of voltage instability is loss of load in an area, i.e., a blackout. The term
voltage collapse is used to describe “the process by which the sequence of events accompanying
voltage instability leads to a blackout or abnormally low voltages in a significant part of the power
system” [4]. Many large blackout events in history are mainly or partially attributed to voltage
instability or voltage collapse [5, appendix. F], [6, chap. 1], including the Northeast blackout in
2003 that impacted more than 50 million people [7]. Thus, to prevent the catastrophic blackouts
caused by voltage collapse, theories and techniques for voltage stability assessment and control are
consistently among the critical research tasks of power community since 1980s.

This work focuses on the study of long-term wvoltage stability. It considers the stability in the

long run, typically as loads slowly increase under various operating conditions. Thus, it could
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Figure 1.1: Classification of power system stability [4].

involve slower acting equipment such as tap-changing transformers, thermostatically controlled
loads, and generator current limiters. Based on the connection between saddle-node bifurcation
(SNB)/limit-reduced bifurcation (LIB) and the steady-state loading limit [8, 9, 10, 11], this work
specifically considers the long-term dynamic problem that can be properly simplified and analyzed
using algebraic equilibrium equations, which is mainly recognized as a small-disturbance voltage

stability problem.

1.1.2 Model Simplification for Long-Term Voltage Stability Analysis

A research focus implies the specific modeling. Power system is a nonlinear dynamic system
that generally can be formulated as ordinary differential equations (ODE). Based on the theory
of singular perturbation and time-scale decomposition of the dynamics [12], the dynamics faster
than what we concern (e.g. electromagnetic dynamics) can be ignored under proper conditions
by their equilibrium equations, and the dynamics slower than what we concern (e.g. sustained
load buildup) can be ignored by fixing the state variables as parameters. Thus, for certain study
purpose, power system generally can be simplified as a set of differential algebraic equations (DAE)

[13]. (1.1) shows this simplification process, where s denotes the multi-dimensional state variable
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of the power system, and it can be decomposed into three components x, y, and z which denote
the state variables for the concerned dynamics, fast dynamics, and slow dynamics respectively; F'
gives the full representation of the nonlinear dynamics of the system, which can be transferred to

three components f, g, and h corresponding to x, y, and z; z is regarded as a given parameter after

simplification.
N z=h(z,y,z)
ime-scale s
@ g — F(S) decomposition @ : P f(x7y7 2) simplificatoin @ : T = f(fa Y, Z) (11)
. 0=g(z,y,2)
y=g(z,y,2)

Under the causality condition [9], 0 = g(z,y, 2) determines an implicit function from (z,z) to

y, then substitute it into f gives the explicit ODE of the simplified system (3):

i':fd('%z) :f(a:,y(x,z),z) (1'2)

The system is said to undergo a bifurcation at z = z. if the flow (informally speaking, the
solution phase portrait of ) of (1.2) at z = z. is not topologically equivalent to the flow for z near
zc [14]. In particular, a saddle-node bifurcation (SNB) occurs when two equilibrium points of (1.2)
collide and annihilate each other as z changes across z. along certain path. In the neighborhood of
z. along that path, a stable invariant manifold in the state space of x becomes unstable, thus, SNB
implies the instability in the Lyapunov sense. This has been recognized as a major mechanism of
voltage collapse [9].

A critical necessary condition of SNB is that the Jacobian of fj is singular. This can be indicated

by that the Jacobian of (1.1)3) (i.e. gg’zg) is singular, then further indicated by the singularity
of the standard power flow equations when the bus type assumptions (PV, PQ, V@) held well
[8, 9, 10, 11]. These singularities can also be obtained via the K.K.T. conditions for maximizing
the change of z along certain direction with the power flow equations, or the equilibrium equations of
(1.1)3) or (1.2), as constraints. Thus, in case z is the load, SNB, as the long-term voltage stability

limit point, is approximated by the steady-state loading limit, and arguably can be analyzed using

the algebraic equilibrium equations, or simply power flow equations.
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1.1.3 Indices for Long-Term Voltage Stability

Given the simplified model mentioned above, usually just power flow equations, a major task of
voltage stability analysis is voltage stability assessment. Numerous indices have been constructed to
measure the long-term voltage stability. Determinant, smallest eigenvalue, smallest singular value of
the Jacobian, and certain sensitivity of voltage with respect to power injection, are inherent indices
by directly indicating the singularity of the Jacobian. However, they do not have a normalized
range, thus cannot be used for comparing stability among different systems. Other indices which
also can be calculated using current state (or a few nearby states in the case of impendence matching
index based on Thévenin equivalent) are constructed to have a normalized range, typically between
zero and one. Definitions and comparisons of these indices can be found in [15, 16, 17, 3, 18, 19].

The sign of these indices effectively indicates the singularity of Jacobian as a sign of SNB, and
their magnitude can monotonically reflect the extent of stability in some sense. However, the exact
value of these indices usually does not has clear physical meaning, so are rarely used to guide the
system operation. On the contrary, we can define a index using certain metric in the parameter
space, which measures the physically meaningful distance between the current operating point and
the SNB. This type of indices is recognized as voltage stability margin (VSM). For example, when the
parameter is load power, the load margin tells how much load increment is still affordable without
voltage collapse, based on the current operating point and the hypothetical scenario of load increase.
In fact, this is a natural choice for voltage stability index, given that we have established the
connection between collapse point and steady-state loading limit (see 1.1.2). From the perspective
of online voltage stability monitoring, margin index is a more intuitive description about how far
the system is from voltage collapse, thus enhances the situation awareness of operators. Moreover,
since the parameters used to define a margin (e.g. the load) are usually controllable, margin index
also provides actionable information that controls can rely on. With these advantages, load margin
is one of the most widely used voltage stability index that has been applied in many aspects of

power system planing and operation. In this paper, by means of PV curve, we defined the VSMas
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the distance between the current operating point and the loading limit point in a hypothetical

scenario, measured by the total active power increment, see Figure 1.2.

Vi Vi
RPle = Qjmax _le
! _
- Qjmax - QjZ
1
—VSM”* ; L
L YSMT 1
| ST VSM |
—VSM’ - —
0 sl ps2 ps3
Pc Ptotal E Pc Pc F)c Pc Botal
(a) Different base operating points. (b) Different hypothetical scenarios.

Figure 1.2: Definition of voltage stability margin (VSM) and reactive power reserve (RPR). (a)
Two instances for different base points under the same hypothetical scenario are annotated. (b)
Four PV curves under different hypothetical scenarios are drawn. The blue ones correspond to
three distinct load increase directions but the same base point; the orange one corresponds to the
PV curve after a contingency such as an outage of generator or transmission line.

1.1.4 Reactive Power Reserve

Reactive power reserve (RPR) of a reactive power source refers to its available reactive power
generating capability. In other words, the RPR of a reactive power source j is defined by the
difference between its maximal reactive generation Q7" and the current reactive generation @),
(see Figure 1.2a). [20] investigated several possible setting of Q7'*®. In this work we simply use
constant Q7"**, which is the standard setting for power flow problem.

A basic factor for power transmission network is that on normal operating conditions, bus
voltage has a strong connection with reactive power injection, but relatively weak connection with
active power injection. Therefore, RPR is naturally regarded as the available capability of the
system to maintain voltage level, which inherently connects to voltage stability, and insufficient
RPR is a common reason in many blackout events [7]. Thus, reactive power source planing and RPR

management is among the major tasks of today’s utility to maintain the power system reliability.
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The North American Electric Reliability Corporation (NERC) has mandates several standards

requiring real-time monitoring of RPR [21, 22].

1.1.5 Demand Response

The Federal Energy Regulatory Commission (FERC) in order 755 has motivated the utilities to
search for additional resources to support the system flexibility and invest more in clean resources
[23]. Demand Response (DR) resources have been introduced recently for utilizing load-flexibility
at the aggregate level and benefit the overall system needs. DOE (Department of Energy of the
U.S.) provides a brief introduction of DR in its website [24]:

“Demand response provides an opportunity for consumers to play a significant role in the
operation of the electric grid by reducing or shifting their electricity usage during peak periods in
response to time-based rates or other forms of financial incentives. Demand response programs are
being used by some electric system planners and operators as resource options for balancing supply
and demand. Such programs can lower the cost of electricity in wholesale markets, and in turn, lead
to lower retail rates. Methods of engaging customers in demand response efforts include offering
time-based rates such as time-of-use pricing, critical peak pricing, variable peak pricing, real time
pricing, and critical peak rebates. It also includes direct load control programs which provide the
ability for power companies to cycle air conditioners and water heaters on and off during periods
of peak demand in exchange for a financial incentive and lower electric bills. The electric power
industry considers demand response programs as an increasingly valuable resource option whose
capabilities and potential impacts are expanded by grid modernization efforts.”

Electric loads once operating and consuming power are considered synchronized to the power
systems and their contribution can provide potential support to the system in various time-scales.
Reserves extracted from flexible loads are equivalent to contributions from other thermal units,
and the aggregated response from DR programs can be more valuable and economically feasible
than services provided by other peaking units. Therefore, DR resources are counted as a potential

source for future grid flexibility [25].
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1.1.6 The Need, Challenge, and Opportunity for Real-Time Margin Monitoring and

Control

The NERC standard [26] requires to establish the System Operating Limits (SOLs) methodology
for the operations horizon, by which “the system shall demonstrate transient, dynamic and voltage
stability; all Facilities shall be operating within their Facility Ratings and within their thermal,
voltage and stability limits”, under normal condition or N-1 contingencies. Although monitoring the
online state measurements (e.g. RPRs, voltages, power flows, etc.) involved in SOLs may enhance
operators awareness regarding whether the operating state is secure or not, and it is possible to
enhance stability through simply steering the system away from SOLs (e.g. RPR management may
improve voltage stability [27, 28]), the raw measurements cannot provide quantitative information
like VSM to show how far the system is from a voltage collapse. The Federal Energy Regulatory
Commission (FERC) has questioned the efficacy of the some NERC standards by saying that
system operators cannot gain situational awareness by simply viewing massive amounts of raw data.
According to [29], ¢ while the requirements identify the data to be gathered, they fail to describe the
tools necessary to turn that data into critical reliability parameters”. The post analyses of many
blackout events have shown the necessity and benefits of adoption better stability monitoring and
control tools [7]. Therefore, there is a need to develop tools that can transfer the massive amount of
data gathered in the energy management system (EMS) into meaningful information that indicates
voltage stability (e.g. VSM) in real time. Then, an online control strategy is needed to steer the
system back to security once low VSM is observed.

A major challenge for this objective is that VSM is computationally intractable in the real-time
horizon. Classical methods for exact VSM evaluation, i.e. continuation power flow [30, 31, 32],
direct method [33, 34, 35| and nonlinear optimization [36, 37] are quite computationally intensive
for detailed model of large system, especially when multiple hypothetical scenarios are considered.
Thus, VSM evaluation based on these methods usually cannot be finished in real time, let alone
used in a VSM constrained optimal control where multiple evaluations of VSM is inevitable during

the iteration.
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The big data techniques, especially the fruitful achievements in machine learning, provide great
opportunities to quickly make sense of the online measurements. By this class of methods, first,
sufficiently many VSMs of historical and simulated operating points are calculated using aforemen-
tioned classical methods. Then a statistical predictive model is trained from the state measurements
and corresponding VSMs of these operating points using machine learning techniques. During the
training process, the predictive model learns the underlying relationship between the measurements
and VSM, implied by the system model mentioned in 1.1. That yields an explicit representation of
VSM as a function of the measurements. In this way, VSM can be evaluated in-real time for online

operating condition, and used to construct VSM constraint in an optimization problem.

1.1.7 The Need for Adaptive Approach

Efforts have been made in developing machine learning-based method for VSM online moni-
toring and control (see Chapter 2). However, most of the existing monitoring methods, mainly
based on off-line training, tend to underestimate the complexity and variability of the underlying
pattern between the measurements and VSM (detailed in 3.1.6), and underestimate the variability
and uncertainty of the control environment (i.e. state and availability of control resources, impacts
of other controllers, etc.). Consequently, they cannot well adapt to the changing condition of power
system operation. Thus, there is a need to investigate the adaptive methodology for online VSM
monitoring and control.

Recently, this need is further magnified due to the variability and uncertainty imposed by the
increasing penetration of renewable energy. On-off switching of units including generators, which
structurally changes the system equations mentioned in 1.1, becomes much more frequent. In
such circumstances, a permanent or periodically updated off-line predictive model cannot follows
the operating condition, thus may lead to unreliable predictions and controls. This trend of power
system development further motivate us to develop an adaptive approach for online VSM monitoring

and control in such a non-stationary operating environment.
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1.2 Research Objective

The objective of this work is to develop a comprehensive methodology for online long-term
voltage stability monitoring and control in the new era of smart grid and big data. This approach
should be valid in an uncertain and non-stationary operating environment. In contrast to previous
approaches, this work resolves and adapts to the uncertainty by fully leveraging the online infor-
mation in addition to the off-line knowledge, and cooperatively engages in the demand response as
a new resource for stability control. The focus is on developing study methodology, procedures and
tools to support transmission operators in real-time voltage stability assessment, and in preventive

stability control under emergency.

1.3 Organization of Dissertation

This dissertation includes two major parts: (i) real-time voltage stability margin (VSM) moni-
toring via local regression and adaptive database, (ii) MPC-based online VSM enhancement. The
rest of the dissertation is organized as follows:

Chapter 2 reviewed the important literature in the scope of online voltage stability assessment
and online VSM enhancement methodology, focusing on the relevant works using machine learning
and MPC.

Chapter 3 proposed the real-time VSM monitoring tool using local regression and adaptive
database. The motivation of developing an adaptive approach was thoroughly discussed. Then,
the two technical blocks - local regression and adaptive database are presented in detail. Finally,
it is summarized and demonstrated on IEEE 30-bus system and a real large-scale system.

Chapter 4 proposed the MPC-based online VSM enhancement approach. The requirements for
the concerned control approach were discussed at first. Then, the key techniques for modeling VSM
and integrating demand response were described in detail. The overall formulation and application
procedure were summarized, followed by a test example on IEEE 30-bus system.

Chapter 5 presents the final conclusions and contributions of this work, and discusses possible

future works.
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CHAPTER 2. REVIEW OF LITERATURE

2.1 Online Assessment of Voltage Stability

[38] provided a survey on existing online voltage stability assessment (VSA) methods up to
2011. It classified VSA methods into two broad categories according to the inputs: (i) methods
based on spacially local measurements, which are usually used to support fast local preventive or
corrective controls; and (ii) methods requiring the observability of the whole region (or a large area)
prone to voltage instability, which offer the potential advantages of wide-area monitoring, and they
are usually used to support preventive controls on the system level. In this section, VSA methods
are clustered into five categories according to the methodology and the specific target, followed by

an in-depth review for the machine learning-based methods.

2.1.1 Major Approaches
2.1.1.1 Methods using model-based state space indices

As mentioned in 1.1.3, a bunch of indices have been constructed to indicate voltage instability or
voltage collapse [15, 16, 17, 3, 18, 19]. Some of them are defined in state space (as a function of online
state measurements such as voltages, currents and power injections), whereas others are defined
in parameter space (as a metric on parameter space such as load space). The latter are usually
called voltage stability margin (VSM) which provides physically meaningful information about the
distance to voltage collapse. Although, according to the analyses on power flow equations, VSM
could also be approximated using state variables [39, 40, 41, 42], sometimes indirectly through
state space indices, here it is regarded as a separate type of indices whose exact values do not have
explicit expressions.

Most of the state space indices are based on power flow model or its simplification, while some

others, such as Thévenin-based indices, can be evaluated in a model-free procedure. Here we regard
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them as two different categories, and Thévenin-based methods will be described in 2.1.1.2. Wide-
area measurements (centralized or distributed [43, 44, 45]) or local measurements could be used as
the inputs for this category. Besides SCADA, phasor measurement units (PMUs) are also utilized
to provide the inputs for index evaluation [46, 47, 48, 49, 44, 45].

This category of methods use online measurements of one operating state as inputs (special
cases are the methods based on the multi-solution property of power flow [50, 51, 52], which also
need the conjugate low voltage power flow solution). Typically, they are used for quickly indicating
the onset of voltage instability, triggering a warning for marginally stable operating condition,
or approximating VSM based on full/simplified /local power flow model, via evaluation of explicit
function of the inputs. However, most of them cannot provide margin information. Some of them

can approximate the margin but need strong assumptions or simplifications of the system.

2.1.1.2 Methods based on Thévenin equivalent

This category of methods [15, 53, 54, 55, 56, 48, 57, 58, 59, 60, 61, 62] are based on the simple
principle from circuit theory: the output load power of an independent linear AC network reaches
its maximum when the load impedance matches the Thévenin equivalent impedance of the network
(two impedances have equal magnitude). Thus, voltage stability can be indicated by the ratio
of the two impedances. The key of these methods is that the two impedances, or their ratio
directly, can be simply estimated by online measurements without any model parameters, thus this
category of methods could be model-free. For supporting fast local control, they can use only local
measurements to get the single port impedance ratio as a local instability indicator. Or the ratios
from multiple ports can be assembled at the control center as a wide-area indicator.

A model-based variation for this category introduces the concept of coupled single-port circuit
model [58, 59, 60, 61, 62]. Based on the linear network equations (of voltages and currents), the port
character can be equivalently described by an extended Thévenin circuit which includes an extra
component (source, load, or impedance) to reflect the coupling with unseen independent variables

(e.g. current injections at other buses). Comparing to classical Thévenin equivalent, the coupled
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version utilized wide-area information more deeply and could be used to approximate VSM under
proper conditions. However, it requires wide-area measurements and network model.

[59] compared some of aforementioned methods by time domain simulation.

There are also semi-model-based variations for this category, where system model is used to
reduce the need of measurements at two distinct operating points to that of only one [63], or used
to validate and calibrate the impedance estimates from the measurements [64]. Another benefit of
combining model and measurements is that it is usually less sensitive to the measurement noise.

Research on this category is pretty active due to the model-free property and the implementation
of PMU. However, there are some inherent challenges that may limit these methods: (i) it is sensitive
to the quality of the measurements, so some filters are needed to smooth the measurements while
capture the actual moving of the steady state; (ii) the two instants of measurements cannot be
too close (otherwise noise will be a big issue, and the equations for impedance estimation will be
ill-conditioned), while they also cannot be too far away (otherwise they correspond to different
operating points which do not have the same Thévenin parameters), so a subtle strategy is needed
to choose the sampling interval; (iii) the approximation of VSM from Thévenin equivalent, if any,

is usually under strong assumptions and simplifications.

2.1.1.3 Methods based on PV curve tracing

PV curve tracing, via continuation power flow [30, 31, 32] or consecutively solving power flow,
is the most reliable static way to calculate VSM since it can consider the detailed model of system
which usually has very complicated (discrete, of composite logic, path-dependent) behaviors during
load increase. This advantage itself implies its limitation: it is quite computational intensive and
deeply model-dependent. Thus, for large system, it cannot provide VSM evaluation in real time.
For online application, usually it is used in the study mode of EMS, in order to validate VSM
prediction from other fast methods, or provide detailed analyses on selected critical contingencies.
As a classic method to calculate VSM, it has been widely commercialized in many ESM applications

(65, 66].
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Numerous efforts have been made to speed-up the process of PV curve tracing, among which,
Dimo’s method is reported to achieve real-time level for practical system. This method was devel-
oped by Paul Dimo [67, 68, 69, 70], and successfully implemented in several running SCADA /EMS
installations [69]. It follows the same idea of stepwise stressing the system until the voltage col-
lapse, but the stressing process is realized by a “case-worsening procedure” instead of performing a
sequence of power flow computations. The fast case-worsening procedure is enabled by (i) a strong
simplification of system including short-circuit current network transformation and aggregated fic-
titious load center, and (ii) using AQ/AV as collapse point indication, which leads to a reduction in

accuracy.

2.1.1.4 Methods based on voltage stability region

The idea of this category is, if the entire boundary of voltage stable operating region in pa-
rameter space [71, 72, 73, 74] can be explicitly represented off-line, then online VSM evaluation is
simply calculating the geometrical distance between the current operating point and the bound-
ary. Many techniques have been developed to obtain the boundary through sampling-fitting or
machine learning [75, 76, 77, 78] (note: although machine learning techniques like neural networks
are used, these works target at the analytical representation of the security or stability boundary
rather than predictive model of VSM, so they are regarded as region based methods rather than
machine learning based methods described in the next section), tangent hypersurface [79, 80, 81],
or function approximation for bifurcation equations [82]. When the concerned parameter space has
only 2 or 3 dimensions, continuation methods also be used to trace the boundary [6].

Many utilities’ control area can be divided into a small number of generation or load centers,
and the operators mostly concern the transfer limits among these centers as part of the system
operating limits (SOLs). To this end, the methods of this category can be used to visualize the
voltage stability boundary in the transfer power space, so as to enhance the situation awareness.
However, the scalability is a big issue for these methods, because all of them inherently face the

curse of dimensionality in representing a hypersurface in high dimensional parameter space.
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2.1.1.5 Methods based on machine learning

From 2.1.1.1 to 2.1.1.4 one can clearly see that the trade-off between evaluation efficiency and
model accuracy is a key problem in designing a VSM monitoring method. To achieve real-time
level efficiency, all the aforementioned methods, except the one approximating stability boundary by
sampling-fitting, simplify the underlying model by deduction using power system domain knowledge.
Another possibility is approximating the underlying model by induction from data. Methods based
on machine learning can be helpful in this area.

First, these methods evaluate certain voltage stability measure (e.g. get VSM by tracing PV
curves) under various operating conditions and hypothetical scenarios using the detailed system
model (even using real-time simulation of dynamic model). Thus, a database of online state mea-
surements and corresponding voltage stability measures is established. The state measurements
are the ones that can be directly obtained from SCADA/PMU/EMS system, such as voltages,
reserves of generators, and power flows. The voltage stability measure could be a continuous index
mentioned in 1.1.3, or simply a categorical description such as “stable”, “unstable”, “emergent”.
Then, a statistical predictive model that directly maps the state measurements into voltage stabil-
ity measure is trained from the database using supervised machine learning techniques. During the
training process, the predictive model learns the underlying relationship between the state mea-
surements and the voltage stability measure, and finally reaches an explicit representation of the
voltage stability measure as a function of the state measurements, which can be quickly evaluated
for online operating point in real time.

In contrast to the underlying models adopted in most methods of other categories, the pre-
dictive model here is obtained through a synthetic procedure. Based on statistics, these methods
inherently consider the uncertainties of operating point and hypothetical scenarios (typically, it’s
output is a mathematical expectation), which makes them preferable in an uncertain operating en-
vironment. Besides, compared to the methods of other categories, machine-learning based methods

are concurrently endowed with the favorable features that they are (i) based on detailed system
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model, (ii) applicable in real time, (iii) scalable for large system, and (iv) applicable for what-if

scenario. The techniques in this category will be reviewed in detail in the next section.

2.1.2 Machine Learning-Based Voltage Stability Monitoring

Various learning techniques have been investigated for online voltage assessment. The outputs
of these predictive models could be real-valued VSM (regression), or categorical security level
(classification) [83]. Most of the literature in this field are based on artificial neural network (ANN)
[84, 85, 86, 83, 87, 88]. The general comment is that ANN usually achieves superior in-sample
accuracy, and proper tuning techniques could also release its potential to gain a better performance
in predicting new data [89, 90].

However, due to its complex and nonlinear model structure, the training process of ANN is usu-
ally computationally cumbersome and the mapping between input and output is opaque (black/grey
box without a simple closed form). Notice that such opaqueness of ANN sometimes is not acceptable
when it is used in safety critical applications like power system stability monitoring and control.
Efforts are devoted to extracting closed-form rules from ANN to reveal the black box [91, 83].
However, this could be done only after the ANNs are obtained, which further aggravates the com-
putational burden. Besides, in the literature mentioned above, each ANN is usually trained for
particular network topology, indicating that the number of ANNs could grow out of proportion in
case hundreds of topologies are considered, and the final prediction accuracy relies on online topol-
ogy identification. [92] showed the possibility of using only one neural network for different system
topologies, but only a very small number of most severe outages are considered in the applications.

Except for ANN, other learning techniques such as decision tree (DT) [93, 94, 95] , random
forest [96], support vector machine (SVM) [97], bagging [98] and linear regression [99, 100] are also
applied for VSA. [98] compared these methods and suggested that an additive and transparent
regression model is more robust to missing inputs and can well balance the accuracy and simplic-

ity /transparency, which could be crucial for security sensitive problem like stability monitoring.
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Along with learning algorithm, the problem of input feature selection is another focus of re-
search. The inputs of the statistical models mentioned above are usually first selected by heuristics.
Load looks like intuitively the first choice because the load margin itself is measured by the load
change. Besides, generations and reserves of generators, power flows and losses in transmission
lines, and voltages are usually among the candidates. The set of such input features can be fur-
ther reduced either based on experience or the mathematical correlations between a feature and
VSM. For example, the critical load bus or generator location methods developed for voltage sta-
bility analysis and control can be utilized to for feature selection. Besides, standard techniques for
feature selection and dimension reduction, such as principle component analysis (PCA), provide
abundant tools to identify or extract effective features.

In this work, we emphasize the special role of RPR as input feature. As mentioned in 1.1.4,
RPR is inherently connected to VSM, and therefore NERC has issued standards related to RPR
real-time monitoring [21, 22]. Also, RPR has some favorable features which will be discussed in
3.1.3.

Taking advantage of the simplicity and transparency of linear models, [99] explored the RPRs as
potential indicators of VSM. In this work, an online voltage stability monitoring system using the
concept of equivalent RPR is proposed, where VSM is predicted by a linear function of equivalent
RPRs. Results have shown that RPRs can be effective indicators of VSM.

[100] extended this idea. Multi-linear regression model (MLRM) with quadratic terms were
used to model the relationship between VSM and RPRs. Operating conditions are sampled off-
line over a large range of contingencies, operating scenarios and load increase directions, and then
divided into a few groups. MLRMs are trained for each group of data individually and a model
identification tool using decision tree is trained to select proper model for a given operating point.
Results showed that MLRMs can be successfully employed in online VSM estimation for large-scale
systems.

Despite these fruitful progresses, to the best of our knowledge, most existing learning-based

VSM monitoring approaches share two major limitations. First, they assume a global (or large-
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area) but relatively simple structure of the predictive model. In other words, these approaches
usually assume the predictive model (with determined parameters) could work well under all prac-
tical operating conditions. But the model structures (such as polynomial, tree, or practical-sized
shallow ANN) are actually not flexible enough to globally describe the underlying pattern, espe-
cially when the nonlinear or discrete behaviors of system such as outages and switching controls are
considered. Second, they usually train and validate the predictive models purely off-line, with data
from limited operating conditions. Therefore, they can neither adapt to the evolving operating
condition, nor self-rectify any bad prediction online. [94, 98, 96] proposed some mechanisms to
update the predictive models when unseen operating condition is detected. That empowers these
methods with some adaptiveness of operating condition, but the “seamless prediction” for unseen
conditions is still difficult to be achieved due to the periodical validation strategy or the heavy
computational burden for re-training. These unfavorable features of existing methods significantly
limit their applicability in the new environment of high variability and uncertainty due to the
renewable penetration.

In this work, a novel learning-based VSM online monitoring approach is proposed using local
regression and adaptive database. It aims to balance model accuracy and simplicity/transparency,
balance global and local patterns, and balance online and off-line trainings. This approach can
adapt to the changing condition of system, so it could be more applicable in the system with high

renewable penetration.

2.2  Online Control of Long-Term Voltage Stability Margin

Since VSM is a global (entire system related) and implicit (physically unmeasurable) quantity,
fast (real-time) local control approaches are usually not valid for VSM maintenance. If near-real-
time (usually 5~15 minutes) is the concerned time framework, optimization or optimal control

should be the promising techniques to design the control.
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2.2.1 Optimization Based VSM Maintenance

The existing optimization based methods for VSM maintenance can be classified into two cat-

egories: indirect methods and direct methods.

2.2.1.1 Indirect methods

Instead of using VSM as the control target, the indirect methods select relevant and manipu-
latable variables (or state space indices described in 1.1.3 and 2.1.1.1) as the control target, hoping
that VSM (or generally the long-term voltage stability) will be effectively enhanced by the control
actions as a byproduct.

A typical example for this category is voltage stability enhancement via RPR management
[101, 27, 102, 103, 104]. In [27], a dual objective optimization approach to maximize the amount
of RPRs and reduce system losses is proposed. Simulation results have shown that the amount of
voltage stability margin increased with an increase of reactive power reserves. The approach used
a nonlinear optimization framework based on optimal power flow and Benders decomposition to
determine the best current operating condition.

The concept of reactive reserve based contingency constrained optimal power flow (RCCOPF)
is introduced in [101]. An optimal power flow framework is used to identify the minimal amount of
RPRs necessary in order to improve the amount of voltage stability margin for various contingencies
and operating conditions. Implementation of the approach shows that the amount of voltage
stability margin is improved and that the found system state (power flow solution) corresponds to
the minimum effective RPR.

[103, 104] defined the effective RPR directly related to VSM, and maximize them to enhance
the voltage stability. [103] also proposed the concept of dynamic RPR that is connected to the
short-term voltage stability. [104] considered the control areas and chance constraints. However, in
these works, the effective RPR essentially becomes an equivalent long-term voltage stability margin

index which cannot be directly monitored and manipulated.
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There also exist other indirect methods such as the online voltage/var control (VVC) techniques
which consider voltage stability maintenance as one of the objectives [105].
[106] gives a review of many methods in this category from the perspective of voltage constrained

reactive power dispatching.

2.2.1.2 Direct methods

The direct methods simply use VSM (the load margin or other margin indices) as the control
target (either in the objective or in the constraints). As it will be shown in 3.1.2, VSM is usually
a nonlinear, nonconvex, nonsmooth, and even discontinuous function of the operating states and
parameters explicit in the system equations (if the function exists). Thus, to integrate VSM into
a control optimization problem, we need to either implicitly formulate VSM using (i) bifurcation
conditions (like in the direct methods of calculating the collapse point) [107, 108] or (ii) sub-level
optimizations (like in the nonlinear optimization methods of calculating the collapse point) [109],
or construct an explicit formulation of VSM as a differentiable expression of operating states or
parameters. These problems are usually referred to as voltage stability constrained optimal power
flow (VSC-OPF). In general, any stability region based method mentioned in 2.1.1.5 or machine
learning based method mentioned in 2.1.2 provides a way to obtain such an explicit formulation of
VSM.

However, most of these implicity or explicit formulations of VSM are computationally intricate
and therefore rarely used in the context of online VSM control. The practical methods in this
category are usually based on the linear formulation (approximation) of VSM, i.e., using VSM
sensitivity [110, 111]. But calculating VSM sensitivity based on the bifurcation conditions [112]
requires a bifurcation point as the initial input, which further requires continuation methods or
direct methods to obtain the bifurcation point. In this case, the computational burden may become
unaffordable for online application when multiple contingencies are considered.

[113] proposed to address the problem of real time voltage stability through the enhancement of

critical RPRs and system VSM. In some sense, this work combines the ideas of both direct methods
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and indirect methods — it uses RPRs as the intermediate variables that link control actions to VSM
through sensitivities. The method is expected to be used in emergency situations when low amounts
of RPRs, VSM or voltage violations are observed. Sensitivities of control actions of critical RPRs are
used to determine the optimal amount and location of control. The control problem is formulated

as a convex quadratic programming. This approach will be discussed in detail in 4.1.1 and 4.1.2.

2.2.2 Applications of Model Predictive Control in Power System

Model predictive control (MPC) is an advanced method of process control that has been in
use in the process industries in chemical plants and oil refineries since the 1980s [114, 115, 116].
In recent years it has been also applied to power system for various purposes such as instability
prevention [117, 118], frequency control [119], and voltage/var regulation [120, 121, 122, 123].
[124, 125, 126, 127, 128] applied MPC in voltage stability related controls. Detailed power system
model using differential algebraic equation (DAE) including excitor, OLTC and load models, or
simplified static models are used to predict the system response to operating condition changes and
large disturbances in short-term or long-term time scale. Although the configurations on system
model, cost function and available control actions are different in these works, voltage stability
constraints are only involved through voltage magnitude constraints. Voltage stability indices such

as VSM have never been explicitly involved in these MPC-based methods.

2.2.3 Applications of Demand Response in Voltage Stability Enhancement

The recent report [129] from the IEEE task force on “contribution to bulk system control and
stability by distributed energy resources connected at distribution network” summarizes the re-
searches and practices about using demand side controls of active distribution networks for gird
stability enhancement. However, the focus of this report is on distributed energy resources (DERs).
So far, the only published work we found about using demand response (DR) for VSM enhance-
ment is given by the authors of [111]. Thermostatically controlled loads (TCLs) are engaged in as

the control measure. Their capability limits, i.e., discomfort constraints, are converted to instant
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feasible ranges of load reduction amount in the bulk level VSM constrained optimization. VSM
sensitivity based on [112] is used to locally formulate VSM. Voltage stability security after contin-
gencies are also considered. Our proposed approach follows the idea of using TCLs as an effective
VSM control measure, and devotes itself in developing better modeling framework (MPC), TCL

capability limits, and VSM formulation techniques.

www.manharaa.com




22

CHAPTER 3. ADAPTIVE REAL-TIME VSM MONITORING APPROACH
VIA LOCAL REGRESSION

3.1 Introduction to VSM Prediction by RPR

This section describes the idea and our previous implementation of predicting VSM using linear
regression model of RPRs. The aims of this section are as follows. First, the mathematic essence
of the implicit mapping from a few online measurements to the expectation of VSM is discussed
to show the theoretical possibility of statistics based approached, and the complexity of this map-
ping. Second, motivated by our reflection on the physical features of RPR and the statistical data
observation, we select RPRs as VSM predictor candidates and use simple model structure. This is
inherited by the new proposed approach, and it shows how we integrate our prior domain knowledge
into the general machine learning techniques. Third, we briefly introduce our previous work as the

base and the reference approach for the new one.

3.1.1 Definitions and Terminology

To facilitate our discussion, first we formally declare some general terms. The voltage stability
margin (VSM), denoted by M, refers to the distance between current operating point and the
critical point (nose point of PV curve) under certain hypothetical scenario measured by the total
real power load increment. Reactive power reserve (RPR) of a reactive power source j is defined by
the difference between the maximal reactive generation Q7*** and the current reactive generation
Qj. Several possible settings of Q7'*® will lead to different RPR definitions [100]. In this work we
simply use constant Q;”a"” , which is the standard setting for power flow problem. It is trivial to
extend the proposed approaches using some other RPR definitions. X € R refers to the row
vector of selected RPRs (as VSM predictor candidates), and D is the number of selected RPRs.

Tracing the PV curve by continuation power flow or other methods gives a series of operating

www.manaraa.com



23

points, and then yields the corresponding RPRs-VSM, or (X, M) pairs. For a comprehensive long-
term woltage stability assessment (VSA), PV curves are traced off-line under various contingencies
(in this work, force or scheduled outages of generators, transformers and transmission lines are
considered), operating scenarios (certain system configurations such as generation and load profile,
control parameters) and load increase directions (LIDs). This builds up a database of (X, M) pairs.
The term database will be also used to denote the collection of operating points. Notice that by

this setup, a hypothetical scenario, i.e. the way of parameter change, is reduced to a LID.

3.1.2 The Mathematic Essence of VSM Predictive Model

In 3.1.1, we have described how to calculate VSMs under various operating conditions through
the procedure of VSA (set parameters of operating condition, then trace PV curve). Our objective
is to find the predictive model that explicitly maps online measurements (reflecting the operating
condition) to VSM or some approximation of VSM, capturing their relationship that implicitly
exists in the procedure of VSA. In this section, we will investigate the abstract equations defining
that underlying relationship, i.e., the mathematical equivalent to the VSA procedure. Then we
can find that the underlying mapping determined by these equations, i.e., the learning target of
the predictive model, may generally exist, but usually too complex to be represented by a simple
parametric model.

Under reasonable assumptions, the critical point of voltage stability is connected to the saddle-

node bifurcation (SNB), which can be described by (ignore transversality conditions)

fz,A\p) =0 (3.1)

g (x,A,p) = det (fz) =0 (3-2)

f represents the static system equations (usually power flow equations). z is the state variable. A
is the load increment (at a SNB) with respect to certain base value. p is any continuous parameter
giving the operating condition, such as the base load profile and the LID. Equation (3.2) (or its
variance) is called the bifurcation equation, saying the Jacobian df/0x is singular. [112] shows

that-lecally-there exists-a-smooth implicit function h that maps p to A. If & is the learning target,
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then by the universal approximation theorem, it is possible to accurately represent it by a shallow
NN.

Unfortunately, (3.1)-(3.2) are not equivalent to the VSA procedure, so h is not our learning
target. First, they are valid for all SNBs. But the only SNB making physical sense, which makes A
equal to M obtained by PV curve tracing, is the one connecting stable equilibrium manifold. So,
if multiple SNBs exist for fixed p (generally true), extra information is needed to determine the h
with physical sense.

Second, (3.1)-(3.2) cannot describe the discrete changes of operating condition in VSA such
as bus type switching (e.g. PV—PQ), tap changing, shunt switching, unit start-up/shut-down,
and contingencies. These changes are usually regarded as the changes of f and g, so cannot be
described universally by a single set of equations. To describe the learning target valid for all

operating conditions, we need the equations

f1(@, M, Ypus (p,d) ,p,d) =0 (33)
fo (x, M, Yyus (p. d) ,p,d) = 0 (3.4)
g (x, M, Yyus (p,d) ,p,d) =0 (3.5)
p(x, M, Yyus (p,d) ,p,d) =0 (3.6)

Yhus is the network admittance matrix (notice that most of the discrete changes can be represented
by the variation of Yj,s). d is any discrete parameter (e.g. on-off states of units, tap positions).
f1 is the full power balance equations. f» describes the conditional constraints, typically the ones
control the bus types (e.g. (Q; — Q"*)dy = 0, where dj, is an element of d such that dj, is nonzero
iff Q; reaches its upper limit). Equation (3.5) represents the bifurcation equation. Equation (3.6)
is the condition that restricts the SNB to be the one with physical sense (could be realized by the
holomorphic embedding method [130]). Thus, the mapping h : (p,d) — M, if uniquely determined
by (3.3)-(3.6), explicitly links the parameters to VSM on quite general operating conditions.
However, we do not usually regard h as the learning target because p and d are unsuitable to

be directly used as the inputs of a predictive model. In particular, (i) dimp + dimd (the total
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dimension of parameters) is usually very large; (ii) parts of p and d are unobservable from EMS;

(iii) parts of p and d are inefficient as VSM predictors. Instead, we select some online measurements
y =9 (z,p,d) (3.7)

to be the prediction inputs (RPR, V, and Pgey in this work). Since dimy < dimp + dimd, O~!
generally does not exist. Thus, & : y — M is undetermined by (3.3)-(3.7). But if (p,d) has certain
joint probability distribution & for practical operating conditions, then the conditional expectation
E (p,d|y) can be determined via (3.3)-(3.7). Consequently, there exists  : y — E (M) determined
by (3.3)-(3.7) and &?. The key fact that supports the effectiveness of using E (M) to predict M is
that &2 is usually highly sparse and locally low dimensional, such that the deviation of M from its
expectation E (M) is usually at an acceptable level, if proper prediction inputs are selected.

This ;L, if exists, is our learning target. Unfortunately, each of (3.3)-(3.7) or & is highly
nonlinear, discrete and more importantly, full of composite logics. As a result, iL, which gives
the expectation of VSM on any practical operating condition, is very complex and difficult to
be accurately learnt by a practical-sized shallow neural network or other parametric models with

limited effective capacity.

3.1.3 The Favorable Natures of RPR as VSM Predictor

The possibility and superiority of RPR as VSM predictor are clearly based on its physical
natures. First of all, according to [5, 12], for the 2-bus system, given the power factor in normal
range, VSM and RPR are restricted on a section of quarter circle, and the system reaches the
critical point always when the reactive power generation g; = 0.5 (in p.u. for Spese = E?/X),
no matter what load power factor it has. This implies that RPR is a good VSM predictor. This
analysis and conclusion can be extended to multi-machine system through multi-port Thévenin
equivalent [58] (see Appendix A for the derivation in detail).

Beyond this analytic observation, RPRs is endowed with some other favorable features com-
paring to other online measurements. (i) Explaining VSM by RPRs essentially follows the logic

of -attributing long-term-stability (loadability) to the availability of power sources. This explana-
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tion of long-term voltage stability is not strict, but it is logically sound and still an effective and
popular conceptual model, especially in industry. (ii) Comparing to the real power reserve, RPR
can indicate both real and reactive power load variations. In contrast, real power reserve is not
sensitive to the variation of reactive power load through a high X/R ratio network. (iii) Comparing
to the voltage, RPR could rarely be blinded (directly regulated) by controllers. In contrast, once
a voltage is regulated by switching shunt, FACTS, or OLTC, it cannot see the system changes.
(iv) Comparing to the loads, RPR further reflects the transmission loss in addition to the loads.
So RPR is more sensitive to load changes especially when the system is close to the saddle-node,
given the fact that the sensitivity of loss with respect to load goes to infinity at the saddle-node
bifurcation. (v) Comparing to the reactive power generation, RPR carries the extra information of
source capability in addition to that of the operating states.

Finally, we can directly observe the correlation between VSM and RPR through the scatterplot
of the database (Figure 3.4), which is thoroughly discussed in [100, 131].

All these favorable natures of RPR inspired our attempt to build the VSM predictive model

through linear regression over the database of RPRs-VSM pairs.

3.1.4 Building The Database

The first task of establishing the predictive model is to build the database (or the initial database
for the proposed approach). For the MLRM approach, it means all information available for
extracting the knowledge of the system, whereas for the proposed approach, it just works as the
prior information which establishes the “common sense” of the intelligent system. This is to ask
how many and which operating points should be included. For our purpose, we only need to include
the samples from realistic operating conditions, rather than the whole voltage stability region.

If we have some knowledge of the distribution of the operating condition, there may exist
some “optimal” sampling method, such as the variance reduction methods using D-optimality,
A-optimality, or G-optimality [132, chap.1], or using active learning techniques [133, chap. 8§].

Unfortunately, this is not the case for this study. Even though we know the distribution of operating
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condition, it is not proper to be used here, since it cannot reflect the risk of the operating condition,
thus the optimality does not fit our values. For example, the severe contingencies in a credible
contingency set used for reliability assessment could rarely happen. As a result, if the sampling is
based on probability distribution, the operating conditions under severe contingencies can hardly be
sampled, thus tend to have larger prediction error. This contradicts to the general goal of stability
analysis.

In this work, we assume the prior for the distribution and the underlying model is unavailable.
A sufficiently but realistically large range of contingencies, operating scenarios and LIDs should
be considered to ensure the generality of the predictive model and incorporate uncertainty. All

samples are treated equally. The details of database building will be shown in Table 3.1.

3.1.5 The MLRM Approach

The MLRM approach is described in [100] and [134]. In the off-line phase, the training set is
divided into a few groups according to the initial VSM, and for each group, VSM is supposed to
be a low degree polynomial (quadratic or cubic in practice) of RPRs plus a homogeneous random
error. Then the coefficients of these polynomials can be estimated by ordinary least squares (OLS).
These polynomials are represented as the MLRMs. To select the best MLRM for given operating
point, a model identification tool (IDTool) based on DT or other classification techniques such as
ANN, SVM and KNN (K-nearest neighbor) is also trained off-line using voltage magnitudes and
real power flow as inputs, group label as output. In our recent implementation of the method,
instead of OLS, LASSO (least absolute shrinkage and selection operator) [135] is used to do the
feature selection and linear regression. in the online prediction phase, for given operating point,
IDTool selects a MLRM according to the input voltages and power flows, and then the picked

MLRM provides the VSM prediction using input RPRs as predictors.
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©- | =)
3 |§|7
Figure 3.1: Single-line diagram of the 3-bus system. On the base operating condition: Sy = 15+ j6

MVA, X153 =0.5 p.u., Xo3 =0.6 p.u., X190 =1 p.au., Pgo =5 MW, Vg1 = 1.05 p.u., Vge = 0.95
p-u. When the load increases, its power factor is fixed, and the increment is dispatched to the two

generators, if in-service, according to their reserves.

3.1.6 Limitations of MLRM and Other Methods

As mentioned in the introduction, the MLRM method (and most of other existing ones) has
two major limitations. First, MLRM averages the varying local patterns behind a large number
of diverse operating conditions. Thus, it sacrifices the accuracy for specific operational condition.
Second, MLRMs and DT are trained and validated totally off-line, so the prediction accuracy
strongly depends on the quality of off-line database (how many samples are there and how they are
distributed), and cannot adapt to the online operating condition.

Figure 3.2 illustrates these problems on the 3-bus system given by Figure 3.1. The RPRs of the
two generators are used as VSM predictors. It shows that the RPR-VSM patterns under different
contingencies varies a lot, and obviously cannot be summarized by any single quadratic surface in
the space. For this simple system, ANN and DT have enough flexibility to separate the curves in the
space of Figure 3.2. However, the possible number of curves (contingencies) increases dramatically
when the size of system grows, even when we ignore the unpractical or similar ones. That can
make a shallow ANN or DT oversized or inaccurate. Further, in the space of RPRs, the projection
of the red curve intersects that of the orange one, which implies there are two operating points
not distinguishable by the predictive model while their VSMs differ significantly. This is a general
issue because in practice, the predictors (here the RPRs) usually cannot uniquely determine the
operating condition. Now suppose Line 2-3 is tripped, while this outage, which is distinct, was not
included in the contingency set when training the predictive model off-line. Further assume the

RPRs are close to the intersection. In this case, any model cannot recognize the true operating
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Figure 3.2: RPRs-VSM plots under normal condition and the contingencies. Four contingencies
are depicted: G1 outage (blue), G2 outage (green), Line 1-3 outage (purple), and Line 2-3 outage
(orange). The vertical projections of the red and the orange curves are drawn on the bottom plane
with dashed lines. The operating points are obtained via PV curve tracing under each condition.

condition, and will predict as if the system was operating on the red curve. Such a bad prediction
cannot be rectified until Line 2-3 is re-closed.

These limitations could be more remarkable when the renewable penetration is high. In such
case, the variation of operating condition, especially the on-off states of conventional generators,
could be very large, whereas the off-line training cannot cover all practical combinations of these
generator states. In the field test at the control center of a real utility which has more than 50%
wind penetration, we observed that MLRMs failed due to half of the conventional generators of
selected RPRs are out-of-service.

The recent work [98] admits the locality of underlying model in the topological sense, but the
looking-up scheme it uses for topology matching actually gives up learning the topology from data,
and consequently cannot directly deal with the unseen ones. Although its model updating procedure
empowers the method with adaptability for network topology, but the seamless real-time prediction
hardly can be achieved due to the simulation and retraining process for unseen topology. Besides,

[98] did not report its nonlinear basis function family, for which we can only find the examples
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with cubic polynomial and sinusoidal function restricted within one half period. In this case, the
method is essentially an additive polynomial (roughly) model trained by bagging-like approach
using heuristic weights. In general, LASSO (as an equivalent of bootstrap for linear model) could

perform even better than this kind of (bagging-like) method [136, 137].

3.2 VSM Prediction via Local Regression

To overcome the limitations of existing approaches, we propose to predict VSM via local re-
gression. Local linear regression will be used to train the local predictive model for given operating

point. To mitigate the curse of dimensionality, LASSO is used to solve the local regression problem.

3.2.1 Local Regression

The main idea of local regression is to train an exclusive model online for each given operating
point only using the similar points in the database. The principle here is to admit and utilize the
locality of the underlying pattern which could change a lot due to the discrete behaviors of the
system, such as the topology change after contingencies, PV/PQ bus switching when the reactive

power generation reaches the limits, and unit starting up or shutting down.

= True expectation
Sample in database
Prediction by MLRM o
Neighbors #
Local predictive model ‘
— Prediction by local regression

l olo

VSM

RPR

Figure 3.3: Conceptual illustration of local regression.

Figure 3.3 conceptually illustrates this idea. Suppose we have built the database according to
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3.1.4, and the data correspond to some MLRM are shown as the circles. The black dashed line
shows the true expectation (the best prediction) of VSM given the RPR. So, the target is to reveal
it from the circles. A MLRM (green dashed line) can be established by quadratic regression over
all database points. However, it deviates from the true expectation in several regions. So instead of
using all database points to train the MLRM off-line to predict VSM for all given RPRs within the
range, we use only the neighbors (blue circles) of the current given operating point (two instances z}
and x{l are shown) to train the local model (the two black bars for 2 and z{! respectively) online,
then use it to predict VSM exclusively for the given operating point. The red solid line shows the
predictions of all operating points by local regression, which is closer to the target comparing to

MLRM. Two questions follow immediately. One is how to define the neighbors for a given operating

point; the other is what regression techniques are used to train the local model.

1000 T T ' .
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800F Prgdiction at center
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Figure 3.4: K-nearest neighborhoods with tri-cubic kernel for IEEE 30-bus system. RPRg: RPR
of generator at bus 8. K = 1% of the database size, which is 738 in the example. Each marker
(circle, square, triangle, etc.) represents an operating point in the training set. 8 operating points
are randomly selected as the centers, denoted by black squares. Their neighbors are annotated by
distinct colors and markers, and circled by dashed curves. Darker color indicates larger weight.
Local regression gives the predictions at the centers, which are shown as black bars.

A neighbor of an operating point is a point in the database which close to it in some physical
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sense, such that they are supposed to share the same local pattern. The neighborhood of an
operating point is the subset of the database which contains all its neighbors. So there are three
essential factors to define a neighborhood: space, metric, and size (or boundary). First we need
to clarify that in what space the neighborhood is defined. To make the best use of the online
measurements, we can define the neighborhood in the space of not only RPRs but also other
effective online measurements. As suggested by [134], in this work we include RPRs, voltage
magnitudes and real power flows in major transmission lines. Usually, all these measurements are
highly collinear. So it is beneficial to reduce this space to a much lower dimension D’ by principle

component analysis (PCA). Let
Z=[X,V,Paow] - C, ZeRX (3.8)

denote the projection of the online measurements in this reduced space, where V' and Py, are the
row vectors of monitored voltage magnitudes and real power flows, and C is the projection matrix
into the first D" principle components. X, V' and Py, are standardized to have zero mean and
unit standard deviation before PCA. D', the neighborhood dimension, is selected to contain 95%
of the measurement variance (described in 3.2.2). So the neighborhood is defined in the space of
Z, i.e. the neighborhood space. Euclidean metric is the natural choice for our purpose. Finally, to
control the size of online local regression problem, KNN is applied; i.e. the size of the neighborhood
is directly given by its cardinality K. We call it the neighborhood size. The value of K is tuned
in the validation phase. For a given operating point, we call its projection in the neighborhood
space, 2g, the center of the neighborhood. On the scatterplot of the database in RPRg-V.SM space,
Figure 3.4 shows the neighbors of 8 randomly selected operating points.

Once the neighbors are determined, we can apply certain regression technique to establish the
local model. Local linear/polynomial regression is deemed to be the favorable method for our
purpose concerning both performance and simplicity. The weights based on tri-cubic kernel are
used to emphasize the more relevant samples and smooth the prediction. Next is to determine
the degree of polynomial used as the local model. In practice, the degree is up to 3 to prevent

over-fitting.In-additionsthe.model with even degree, i.e. 2, usually suffers severer boundary effect.
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So, based on the discussion in 3.1.3 and the objective of online application, we choose the degree to
be equal to 1 (linear regression). Instead of OLS, LASSO is applied to train the local linear model
for three reasons. First, there usually exists high collinearity in the RPRs. Second, when K is
relatively small, the design matrix of regression could be not full column rank. In this case, LASSO
is used to grantee a unique solution for almost sure. Third, when some RPR is constant within
the neighborhood, LASSO can automatically exclude it from predictor candidates. This situation
can be caused when Q generation reaches limit, or generator is out-of-service. In all, LASSO is an
efficient method that is able to automatically select the local effective predictors while ensure the
uniqueness of solution, which is robust for online application.

The local LASSO regression problem can be formulated as
1 T
min 3 (M7~ X'8] "W (20) [M' = X'8] + ]3], (3.9)

Let N be the size of database. W (zy) € RV*¥ | a diagonal matrix, is the weight matrix correspond-
ing to the current operating point zg € RDI; each of its diagonal element w;(zp) is the normalized
tri-cubic kernel weight (with KNN window function [90]) corresponding to the ith training point,
which is the standard setting for local linear regression [90]. M’ € R¥ is the locally centered VSM

vector satisfying

w(z0)M' =0, (3.10)
where w(z0) = [w1(20),w2(20), ..., wn(20)] € RN, Accordingly, X’ € R¥*P is the locally
normalized design matrix satisfying

w(z0) X;, =0 (3.11)

XX, /N =1 (3.12)

for all k, where X is the kth column of X'. f is the coefficient vector of the local model. p € Rt
is the regularization factor of LASSO.
There exist quite a few efficient algorithms [137] to solve problem (3.9) in both central or

distributed manner. Once Bo, the solution of (3.9), is obtained, we can use the local linear model
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to predict VSM at current operating point by
Mo = w(z0) M + {0, (3.13)

where x|, € R™P is the current predictor normalized by the same operation that maps X to X'.
An extra benefit of local LASSO regression comparing to MLRM is that it is usually more
robust to the noise and the missing of input RPRs. First, the local model is linear, and the norm
of Bg (a sensitivity of prediction with respect the input noise) is controlled. Particularly, if all
predictors have i.i.d. additive random noises with the variation ¢ (it is not true for the MLRM

with high order terms, which is yet more sensitive to the noise), then the prediction variance is
’ AT A 2 || a2
var(M) — TS vB=0 HBHZ (3.14)

where X y/ is the variance-covariance matrix of X’. For the proposed approach, B is simply the Bo
given by (3.9), and for MLRM, it is a universal coefficient vector and (almost) irrelevant to the
current operating point. Notice that the dimension (or the degree of freedom) of the local pattern

is usually much lower than the global one, so on average the proposed approach tends to have

smaller H B ‘

) thus is less sensitive to the noise. Second, if we set a default value for each predictor,
namely letting arf)yk = 0 by default for all k, then in the case where all RPR inputs are missing
without being aware, the local linear predictive model becomes a local constant model by (3.13).
This is equivalent to weighted KNN regression and usually works better than MLRM [131]. Notice
that VSM is mainly positively correlated to RPRs. Thus, if only a few RPRs are missing, the VSM
prediction tends to sit between the non-missing case and the all-missing case. So, the prediction is
usually more accurate than the MLRM prediction suffering the same missing. Third, if the missing
RPR has been identified, the corresponding column in X’ will be deleted, then little accuracy will

be lost.

3.2.2 Validation and Parameter Tuning

There are three hyperparameters that must be determined before the local LASSO regression

gangbesdoneisthe neighborhood dimension D', the neighborhood size K, and the regularization
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Figure 3.5: Cumulative variance explained of the principle components. (a) is for IEEE30 system;
(b) is for REAL system. The AVE curves (blue) share the same scales shown by the left y axes; the
curvature curves (red) use different scales shown by the right axes. A point (10,82) on the CVE
curve means the first 10 principle components explained 82% of the measurement variance.

K and p should be tuned normally in the validation process for the trade-off between bias
and variance. For D’, nevertheless, the purpose of PCA here is to squeeze out the “useless”
dimensions of input measurements that rise from the inherent collinearity of power system state
variables [138]. This collinearity is mainly a result of Kirchhoff’s laws and the rules of power
system operation, so D’ is somewhat stable with respect to the variation of operating condition,
especially if we set it to be a conservative upper bound of effective dimension. Therefore, the
principle for determining D’ is that it should be large enough to contain most of the variation of
input measurements while computationally practical. In practice, we can select D’ according to the
plot of cumulative variance explained (CVE), shown in Figure 3.5. CVE can be directly output by
most PCA procedures. Usually it increases rapidly at the beginning, then becomes flat (meaning
the profit of involving more principle components becomes little). So, a reasonable cut-off number
for the retained principle components, i.e. the D’, should be on the right side of the “turning-
point”, which can be mathematically identified by the point with peak curvature. In the work, we

set a conservative rule that requires CVE to be greater than 95%. For the test examples shown
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in Figure 3.5, the corresponding values of D’ are roughly 30 and 60 respectively; both exceed the
turning-points. Test results showed that nearly no accuracy improvement could be achieved by
further enlarging D'.

1 controls the strength of regularization. For a given operating point zg, there is a largest u
So, it

that permits a non-null model (the one has at least one predictor), denoted by 11(20),,.x-

is unreasonable to assume a universal p for all operating points, which will force all local models

such that p(zg),,.. < i to be constant. Meanwhile, automatically tuning p for every local model

max

online is also infeasible because of the computational burden and the relatively limited data (the

neighbors). Fortunately, u(zo) can be evaluated in advance of regression once the neighbors are

max

given [137]. So, instead of directly tuning p, we assume there exists a universal ratio

v = (20) / 1(20) max (3.15)

for all local models, which is called relative regularization factor. Thus we can replace u by
Y1 (20) pax 10 (3.9), and tune v instead. This setup enables tuning p in the off-line phase and
locally applying LASSO online. Our testing shows it works.

To understand the construction of «, suppose there is only one predictor, or in other words,
replace X’ in the local LASSO problem (3.9) by its kth column X . Then it is trivial to derive the

solution for (3.9):

X'TW(ZO)M'—M a /
Bok =14 0 | X[TW (20) M| < 1 (3.16)

X, T Wi(z0)M'+p
X1 TW(z0) X},

XITW (20) M < —p1

\
which is known as soft thresholding. Taking W (zp) as a Gram matrix, we can define an inner
product (,-),,, and a norm ||-||,,. Then the common term in (3.16), i.e., the weighted least square
solution, can be written as

Gon X[ W (z0) M (X}, M),
COXI WX Xl

(3.17)

In the case where all X are orthogonal to each other by (:,-),, (3.16) completely gives the

solution of (3:9).In general;as 1 increases, all B(),k are gradually shrunk to zero. When there is
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only one nonzero BAM left (suppose (3.9) has a unique solution), (3.16) is also valid. Therefore, there

always exists a largest p that permits a non-null model, which we denote by 1(29),,.,, satisfying
!/ !
) = mis (X7, D), | (3.18)
= Go ||| XL 1
max ‘ﬁo,k’H ill (3.19)

Notice that X’ and M’ are centered by (3.11) and (3.10), so ||-||,, gives their weighted deviations

and ||-||2, gives their weighted variances. Thus,

(X, M'), | is the product of the deviation of
X, and the deviation of M’ that can be explained by X, (in the sense of projection). Or it can
be written as the product of the slope magnitude and the variance of X, by (3.19). Therefore,
1(20) ax 18 @ measure of the neighbors’ coverage in the product space with respect to X’ and M.

Intuitively, for the local model, we should regularize more when (z) is large, i.e., when the

max

neighbors are disperse and the regression surface is steep. Thus, in this work, let u be proportional

to 14(20) 40 With a universal constant factor v € (0,1] C R, then we have

Bok — yriBoss (Xp, M"Y, > p

Bok =14 0 (X[, M) | <p (3.20)

Bok +rkBos (Xp, M), <—p

for all k in the case where all X are orthogonal to each other, or for k = k* in general, where k*

corresponds to the last nonzero ,6307;.C as p increasing, and r, = [[| X].. w/||X,’€||w]2. Equation (3.20)
shows how v controls the strength of regularization.

In this way, we only need to tune the single hyperparameter v in the validation. By contrast,
if we assume a universal i, then for all zg such that £(20),,. <K, Bo is forced to be all-zero, which
is unreasonable; if we tune p online for each 2y, the computational burden is high and the data are
scarce.

Finally, from the Bayesian perspective, the heuristic of + indeed adopts the Laplacian prior

density

[0 |7 izl
@ﬂ(ﬁ) _ 5 e max 1, (321)
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Strictly, this is not a “prior” since p(zg) depends on data. But it expenses only at most D

max

degrees of freedom, so the effect can be ignored when D < K. Let o = pu(20),,., 5- Equation (3.21)

max

implies, for various zp, %, («) is invariant:

P(a) = [g]i—vnaul. (3.22)

Then we can show the irrationality of our heuristic by the dimensional analysis. For any
quantity X, let [X] denote the unit of X'. For weighted least square problem, it is normal to regard
the weight matrix as the inverse of the variance-covariance matrix Xy, whose unit is [M’ ]]_2.
Thus, [o] = [1(20) .y 8] = [XJ[M']*[M']-[M’][X']"" = 1. That seems reasonable to let a
dimensionless quantity have an invariant distribution. Also notice that ~ is dimensionless due to
(3.15), which is also logically sound for a constant parameter.

For jointly tuning K and ~y, the widely used cross-validation suffers from over-fitting for our
study because the number of considered contingencies, operating scenarios and LIDs are much less
than the size of the database, so all of them are quite likely be traversed by each fold of training set.
Thus, we generate a separate validation set, which includes some exclusive contingencies, operating

scenarios and LIDs. Thus, the tuning in validation is to solve the optimization problem

Nv . 2
min \/J\}U > {My’” - x}”ﬁj(K,’y)]

Ky =1

s.t. for all j: (3.23)

A~

By (K. ) = argmin {3[M" = X)W (=) [M" = X"6] +n(35) 161}

” indicates the quantities of validation set, while “t” indicates the quantities

where the superscript “v
of training set. The objective function is the root-mean-square error over the validation set, given
Bj(K, ) for all j, and NV is the size of the validation set. For each j, Bj (K,7) is the solution of
(3.9), given a point in validation set, zj, as the current operating point. Notice that (3.9) is solved

using neighbors in the training set, for fixed K and ~. Since there are only two continuous decision

variables in this problem and the searching space is convex, it is trivial to solve the problem by
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general optimization solver, or simply by manually searching (demonstrated in Figure 3.9). For the

test examples, solutions with acceptable precision are obtained within 10 iterations.

3.3 Adaptive Database

The initial database trained off-line cannot always densely cover the current operating region,
especially when high renewable penetration and system expansion are considered. So, an effective

database should be updated automatically to adapt to the system changes.

3.3.1 Ciriteria for Triggering Database Updating

To control the cost of computation and data storage, it is unnecessary to augment the database
unceasingly. So, the first task to design the database updating scheme is, naturally, to detect the
influencing system changes that really need an updating, i.e. the ones that possibly degrade the
VSM prediction accuracy.

A straightforward idea is based on the prediction interval. If the prediction interval of each
prediction can be provided, the influencing system change is identified if the prediction interval
exceeds some threshold.

The coarsest prediction of prediction interval may be the one based on the empirical error dis-
tribution of the whole database (described in 3.5.3) or its bootstrap version, which is almost fixed
and does not fit our goal. On the contrary, a very fine prediction, which does not assume any
homogeneity of bias or variance over the predictor space, requires an extra nonparametric learner
of similar complicity in addition to the one for predicting VSM, which significantly increases com-
putational burden and sample complicity. We propose to use the compromised strategy: assuming
the approximated homogeneity of bias and variance for each local model. Under this assumption,

the weighted root-mean-square error over the neighbors (locRMSE), defined as

T 1/2
locRMSEq = “M’ - X’BO} W (20) [M’ - X’BOH (3.24)

is a natural estimate of the absolute prediction error within the neighborhood of zy. Then it is

reasonable-to-estimate-the-prediction interval through the error empirical distribution conditional
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Figure 3.6: Absolute prediction error vs. locRMSE. (a) is for IEEE30 system; (b) is for REAL
system. Each circle gives the locRMSE and absolute prediction error corresponding to one operating
point. The blue curve gives the mean absolute error conditional to locRMSE. The black dashed
curve gives the empirical 95% confident upper bound conditional to locRMSE. The green line is
the linear fitting result of the black curve, which gives the affine mapping f from locRMSE to the
prediction upper bound.

to locRMSE.

This empirical distribution is almost ready-made. During each local regression process, LASSO
solver can output locRMSE without imposing extra computation. Thus we can obtain the scat-
terplot of absolute prediction error (denoted by |e|) vs. locRMSE (Figure 3.6) for free during the
off-line validation or test. Then the empirical mean (blue curve) and confidence upper bound (black
dashed curve) conditional to locRMSE follow immediately (detailed in Appendix B). Figure 3.6
validates our homogeneity assumption (the blue curves are nearly linear with unit slope), and also
implies that (i) although locRMSE alone is not enough to explain all variance of absolute error,
(ii) it is a significant linear predictor for the mean and the confidence upper bound of the absolute
error. Suppose the linear fitting of the empirical 95% confidence upper bound (the black dashed
curve) gives an affine function f : locRMSE + |e| (the green line in Figure 3.6), then the VSM

prediction interval at zg is

Ply = | NIy — f(locRMSEq) , Mo + f(zocRMSEO)] (3.25)
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Notice that it can be monitored in real time, synchronized to the VSM prediction. Once it exceeds
certain threshold, the database should be updated. Since f is affine, it is also convenient to
directly preset the threshold for locRMSE (denoted by s1), rather than PI, and monitor locRMSE
as an index of prediction confidence. So, our first criterion (C1) to trigger the updating is: if
locRMSFEq > s1, start the updating.

Besides, some large system changes that are scheduled or predictable (such as line switching,
maintenance, start-up/shut-down of units, and some large change of dispatching due to the wind
variation) can be used to trigger the update. Operators can list them as the set of possible influential
events, denoted by G. If some events in G will happen in near future according to any schedules
or forecasting, what-if scenarios can be generated in OLPVE. Then the database updating can be
accomplished in advance of the actual system changes, achieving the “seamless adaptation”. So our
second criterion (C2) to trigger the updating is: if {near-future events} NG # @, start the updating.
We limit the discussion on G because it can be suggested by experience or off-line stability studies
(routines for many operators).

Thus, the database augmenting is triggered correctively by (C1) and predictively by (C2), or

manually triggered whenever the operators think it is necessary.

3.3.2 Database Augmenting

When (C1) and (C2) indicate some unfavorable system change, a warning will be sent to op-
erators, and the database should be locally updated to improve the prediction. Particularly, more
operating points relevant to the current one should be added to the database. Lots of existing
EMSs has the capability of tracing PV curves for a bunch of contingencies and LIDs in near-real
time (e.g. 1~10 minutes). we propose to utilize such an online PV curve tracing engine (OLPVE)
in EMS to generates the operating points relevant to the current one. They can be obtained by
adding small perturbations with empirical distributions, or high-probability/critical contingencies
to the current operating point, then tracing PV curves starting from them, along randomly selected

LIDs (based on energy and load forecasting). Then the new generated data are added in to the
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database. We refer to this process as OLPVE augmenting. Assume that (i) on normal condition,
the operating states do not change too fast with respect to the near-real-time scale (usually a mild
assumption), and (ii) if some contingency occurs, it is within the high-probability /critical contin-
gencies of OLPVE. Then, the recent generated operating points by OLPVE are quite likely to be
close to the current one. Thus, the KNN rule will preferentially choose these points as neighbors,
and consequently decrease the prediction error. In other words, OLPVE augmenting makes the
neighborhood tight and dense, which enhances the local training data and helps to alleviate the
curse of dimensionality.

The number of considered perturbations, contingencies and LIDs for OLPVE augmenting, de-
pend on hardware capability and should be based on practice. The neighborhood size K is a
reasonable default setting for number of new operating points, which allows all new data to be
included in the neighborhood. Notice that PV curves can be traced in parallel, so this process
can be speeded up if more computational units are involved. In section 3.5, significant prediction
improvement can be achieved even without considering any perturbation and contingency.

During the OLPVE augmenting, operators should keep skeptical to the prediction and pay
attention to locRMSE, which still provides some clue of prediction error in this period. OLPVE
augmenting can be continued for a few rounds, and terminated whenever (C1) and (C2) are elimi-
nated.

Due to the OLPVE augmenting, the size of database may grow to unacceptable level. In this sit-
uation, some forgetting schemes [139] can be used to screen out ineffective data from the database.

We limit our discussion about the forgetting scheme due to the limited space.

3.4 Overall Framework

Figure 3.7 shows the overall framework of the proposed approach. We have three guidelines for
this framework design. First, integrate off-line and online information (common sense + situational
knowledge) to get the adaptive prediction; second, provide real-time prediction, as well as the real-

time inference (namely the prediction interval) simultaneously; third, reduce the dimension of
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Figure 3.7: The flowchart of the proposed approach. adp: adaptation; C: the projection matrix
of PCA; f: the affine mapping from locRMSE to the fitted PB; G: the set of possible influential
events; LF: linear fitting; locRMSE(: local RMSE over the neighbors of zy; My: the VSM prediction
of current OP; OP: operating point; PB: prediction bound; PF: power flow; Ply: the prediction
interval of Mg; s1: the preset threshold of locRMSEy; W (zp): the weight matrix corresponding to
z0; 20: the projection of given OP in the neighborhood space. No action is needed for “No” at the
two decision blocks (diamond).

feature space to mitigate the curse of dimensionality and enhance the scalability.
In particular, the main procedures of the proposed approach can be summarized as follows. For

the off-line phase:

1. An initial database of operating points (including the corresponding VSMs) is built by the
VSA over a number of suggested and randomly selected contingencies, scenarios and LIDs

(discussed in 3.1.4 and 3.5.2).

2. PCA (including tuning D’) is conducted to get the projection C that reduces the states of
an operating point to a D’-dimensional vector Z, leading to the database of (Z, M) pairs

(discussed in 3.2.1 and 3.2.2).

3. The database is divided into three parts, i.e. training set, validation set and test set. To-
gether with the training set, the validation set is used to tune the hyperparameters K and ~y
(discussed in 3.2.2), as well as determine the affine mapping f (discussed in 3.3.1), whereas

the test set is used to evaluate the performance (generalization error) of the approach (shown
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in 3.5.3). Once the validation and the test are passed, the entire database is stored in memory

and ready for the online procedures.
For the online phase:

4. Given the current operating point from EMS, RPRs, voltage magnitudes, and power flows

are converted to a vector zg by the projection C (via (3.8)).

5. The neighbors of 2y in the current database (initial generated + online updated data) are

identified by KNN and weighted by tri-cubic kernel (discussed in 3.2.1).

6. The local predictive model is trained by LASSO, using the neighbors and the corresponding

weights (embodies the adaptivity of model; discussed in 3.2.1).

7. Combined zy (or zp) as inputs, the local model gives the prediction of the current VSM, i.e.

My (via (3.13)).

8. Meanwhile, LASSO also outputs locRMSFE, which is then converted to the prediction interval

of the current prediction, i.e. PIg, by the affine mapping f (via (3.25)).

The online procedues, i.e. 4)-8), will be continuously conducted for each operating point given by

EMS. Meanwhile:

9. Check the database updating criteria (C1) and (C2). (i) Does locRMSE exceed the required
threshold s;? (ii) Will there be any possible influential events in the near future? (Described

in 3.3.1.)

10. Once the updating criteria, either correctively or predictively, are triggered, the OLPVE
generates relevant operating points online and add the corresponding new (Z, M) pairs into
the database. This process integrates the online information into the database and makes it
adaptive to the current operating condition (embodies adaptivity of data source; described

in 3.3.2).
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Finally, it is worth noting that there is no permanent distinction between the off-line (old) and the
online (timely) data. As time goes by, the online data generated by OLPVE becomes “off-line”. In
other words, the situational knowledge is absorbed by the knowledge pool (database), and becomes
part of the “common sense” of the intelligent system.

Several off-line tuning processes are involved (described in 3.2.2 and 3.3.1). The neighborhood
dimension D’ is selected according to the CVE plots over the whole initial database. The neigh-
borhood size K, and the relative regularization factor v are then tuned using the training and
validation data in a closed-loop optimization process. In the last iteration of this optimization,
where the best K and « are achieved, LASSO also produces the locRMSE-error scatterplot (e.g.
Figure 3.6) over the validation set. Then the affine mapping f, can be obtained by simply the
linear fitting on the empirical prediction bound.

Based on the three guidelines mentioned at the beginning of this section, the proposed frame-

work extends the technology of real-time learning-based VSM prediction in terms of:

1. combining the off-line and the online data, via the adaptive regression algorithm (local linear
regression) and the adaptive data set, to provide timely VSM prediction on the changing

operating condition;

2. providing the time-varying estimation of the prediction interval along with the VSM predic-
tion, so the operators can get the sense that how they can trust the current VSM prediction
and where the true value of VSM could locate, then the closed-loop corrective adaptation can

be established (bad prediction can be automatically rectified);

3. combining local linear regression and LASSO via the relative regularization factor, so as to

achieve the sufficient scalability for large-scale power systems.

They are deemed as the major contributions of this work.
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3.5 Examples

First let us make an argument on the principle for comparing the proposed approach to others.
The performance of a learning based approach in this field significantly depends on the system
setting, sampling and algorithm implementation. So, it is imprudent to compare the accuracy nu-
merically on arbitrary examples and draw some general conclusion, unless we can reproduce others’
implementations according to the published information and build a uniform base for comparison.
Therefore, we decide to compare the performances of the proposed approach only to the reference
one, i.e. the MLRM approach we published previously in [100]. Some qualitative comparisons to

other approaches can be found in [100, 98].

3.5.1 The 3-bus System

As a preview of the effect of the proposed approach, Figure 3.8 visualizes the prediction results
on the 3-bus system given by Figure 3.1 and Figure 3.2. The training set only contains the operating
points under normal condition, G1 outage, and Line 1-3 outage. The validation set also includes
the points under G2 outage, in addition to the former three conditions. For the proposed approach,
all 2 RPRs, 3 voltage magnitudes and 3 active power flows are used as input measurements; D' = 4,
K =116, v = 0.731, where K and ~ are tuned in Figure 3.9.

Figure 3.8(a) shows the limitation of a single quadratic predictive model. For the operating
conditions in the training set, it gives good prediction on normal condition (the red cubes are very
close to the pink spheres), but under G1 (blue) and Line 1-3 outages (purple), the error is large when
the operating point is close to the critical point. It gives very bad predictions for the two unforeseen
operating conditions (green and orange). Following the approach in [134], two MLRMs are used
in Figure 3.8(b). The predictions under G2 outage (green) is improved, but it still fails to predict
under Line 2-3 outage. Moreover, as mentioned in 3.1.6, this kind of improvement is unscalable
due to the complicity of a real large system, and the bad predictions by off-line MLRMs can never
be self-rectified online. In Figure 3.8(b), the local LASSO regression achieves some improvement

comparing to Figure 3.8(b), especially for Line 2-3 outage on stressed conditions. When applying
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the proposed approach online, the unforeseen contingency (Line 2-3 outage), if occurs, will trigger
database updating, then the prediction becomes also quite accurate under this contingency (shown
in Figure 3.8(d)). Besides, the undistinguishable issue at the intersection point mentioned in 3.1.6
is fixed, due to the extra information contained in V' and Pp,, of the neighborhood space. The
performance of the proposed approach will be evaluated statistically on other two practical systems

in the following section.

3.5.2 Database and Parameters

Two example systems are used to test the proposed approach. The first one is IEEE 30-bus
system, which has 6 generators. The second one, denoted by REAL, is an equivalent of a large-scale
system with emphasis on the footprint of a real utility. It has more than 62,000 buses ranging from
distribution level to 750 kV, 1000 generators in total, and more than 600 buses, 100 generators
within the utility’s footprint. For the second test system, we play as the control center of the
utility and monitor the VSM for its operational footprint.

A summary of the database is shown in Table 3.1. The neighborhood dimension D’ are 30
and 60 for IEEE30 and REAL system respectively (tuned in Figure 3.5). The hyperparameters
are tuned using the validation set. For IEEE30 system, K = 3321, v = 0.077; for REAL system,
K =1000, v = 0.928. The ~ for REAL system is close to 1 (the local model is close to be constant)
because the dimension of X and Z are relatively high whereas the initial validation and test set
are intentionally built using a large proportion (half) of unforeseen operating conditions. Equipped
with the updating mechanism, the online database will tend to contain more realistic and relevant
operating points. So, in practice, operators can re-tune the hyperparameters for a few rounds after
some periods of online application, using the online database. Then, foreseeably, v will decrease

and more RPR terms will be involved in the local model.
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Table 3.1: Summary of The Database

System Num-Con Num Size Num Num
N-1 N2 N3 Sev LMD RPR- Mes

IEEE30 43 259 80 0 40 206621 6 71

REAL 339 200 200 51 40 415139 85 2074

Num_con: counts of contingencies. Sev: severe N-k contingencies suggested by utility.
Num_LID: counts of LIDs. Size: counts of operating points in the database. Num_RPR:
counts of monitored RPRs, including all nonconstant RPRs within study areas. Num_Mes:
counts of monitored online measurements, including RPRs, voltage magnitudes and real
power flows.

N-1 contingencies include outages of all in-area generators, transformers, and transmission
lines (above 161 kV). N-2 and N-3 contingencies are random combinations of N-1 contingen-
cies. LIDs are randomly sampled from Gaussian distribution with the base load profile as the
expectation. The database is divided into the training set (50%), validation set (25%) and
the test set (25%). 25% of the N-2, N-3 contingencies, LIDs are preserved for validation and
test set respectively. E.g. 10 LIDs in validation set are never used in training set; 10 LIDs in
test set are never used in training and validation set. So, the contingencies, operating sce-
narios and LIDs in validation sets and test sets are roughly half known and half unforeseen.

PSS/E is used for VSA (PV curve tracing). OLTCs and HVDC taps, switched shunts
work in auto-mode during the VSA. For REAL system, £250 MW perturbations on re-
dispatching of generations and loads, and £0.02 p.u. perturbations on generator scheduled
voltage are applied to the base point of each PV curve.

3.5.3 Static Prediction Accuracy

We refer to the prediction accuracy without the effect of database updating as static accuracy,
which implies that all predictions are treated independently. It is assessed using the tuned hyper-
parameters and the separate test set. The results are shown in Table 3.2 and Figure 3.10.

We follow the procedures in [100] and preset the RMSE targets as 10% for IEEE30 and 5%
for REAL. To simplify the comparison, we exclude the error imposed by IDTool. So, the predic-
tion errors of MLRM approach in TABLE 2 are actually the lower bounds. From Table 3.2 we
can see the proposed approach achieves better static accuracy comparing to the MLRM approach
(column 3 and 5). Particularly, 21.84% error reduction for IEEE30, and 16.6% for REAL (both

using LASSO). More improvement is achieved on IEEE30 mainly because MLRM is underfitting
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Table 3.2: Static Prediction Error in RMSE (Unit:  VSMipitia1%).

MLRM Local regression
System
OLS LASSO OLS LASSO Structured
IEEE30 9.14 9.11 7.47 7.12 7.24
REAL 202.37 5.18 15.04 4.38 4.32

RMSE: root-mean-square error over the test set, i.e. the generalization error.
VSMinitial: base point VSM on normal condition. For IEEE30, VSMjp,itia = 964.06
MW,; for REAL, VSMipitial = 4912.5 MW. Structured: the same as the local LASSO
regression except that RPRs are excluded from the neighborhood space (no X in

(3.8)).

MLRM use quadratic models, and for REAL, it is a quadratic function of the
first 30 principle components of the 85 RPRs. Errors of MLRM excludes the error
imposed by IDTool.

OLS uses all predictor candidates without feature selection, and the local OLS
regression tunes K in validation phase. For REAL, the best K is almost 100% of
training data.

for it (only 6 RPRs). The actual accuracy improvement could be significantly larger considering
the effect of database updating (see 3.5.4).

In the last column, Table 3.2 also shows the result for structured local model (varying coeffi-
cient model), which is deemed to be more suitable for high dimensional problem than typical local
regression [90]. It can be obtained by simply removing RPRs from the derivation of Z (see (3.8)).
The test results show that the local LASSO regression in our problems performs roughly the same
as the structured local LASSO regression, possibly due to the correlation between RPRs and other
online measurements. That implies the general weakness of local regression is not prominent in our
study.

One of the underlying motivations of this work is that the static RMSE, as an average, cannot
tell the whole story. As in many other literature, the static RMSE of the test example seems quite
acceptable for industry application. Here even MLRM for REAL system has only 5.18% error.
However, if we look at the error histograms shown in Fig. 4, there are long tails beyond the RMSE

for both approaches. In fact, data generated purely off-line cannot always cover the real online
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operating conditions, and extremely bad prediction can never be completely eradicated. We find
that local regression also wins in this perspective because the more concentrated and symmetrical
histogram implies the evaluation metric (RMSE) of the approach is more trustable. But more
importantly, we design the adaptive database to rectify the extreme predictions. Let’s show this

effect through a simulation of online adaption.

3.5.4 Online Adaption

Suppose the prediction is made every 10 seconds. Each round, OLPVE can trace PV curves
starting from the current operating point, along 20 randomly selected LIDs within 100 seconds.
Two simulations of online adaptive predictions are presented in Figure 3.11, which shows the VSMs
(true and predicted) and locRMSE over the time.

Suppose the operator requires the prediction error to be less than 400 MW (around two times
of the RMSE), which is around 8% of the margin under normal condition. According to the blue
line in Figure 3.24(b), we use s; = f~1 (400) ~ 160 MW as the threshold of (C1). The system was
initially operating on normal condition. Loads were slowly increasing with uncertainty. A critical
transmission line tripped at t = 50 (denoted by E1). Then two major generators with 1600 MW
generation in total tripped at t = 210 (denoted by E2). The tripped line then was reclosed at t
= 370 (denoted by E3). After E1, although the contingency, an N-1, was included in the offline
contingency set, locRMSE exceeded locRMSEyy,, so updating was triggered. 20 PV curves from
the operating point at that moment were traced during the next 100 seconds, and 1000 generated
operating points are added in the database at t = 150 (Al). OLPVE augmenting is also trigged
after E2 and E3 according to (C1) or (C2). In Figure 3.11(a), the proposed approach always beats
MLRM, and becomes quite accurate after OLPVE augmenting. Over the whole simulation, the
RMSE of proposed approach reduced by 46% with respect to MLRM. The yellow area is the 95%
prediction band given by (3.25), which covers the true VSM all through the simulation. Finally,
we find MLRM could make large error when major RPR predictors become unavailable due to

generator outages (intentional or forced), this can observe in E2. The proposed approach will be
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less affected, because LASSO tends to exclude those RPRs from the local model due to the low
variation within the neighborhood (mostly fixed at zero).

During the short period between the updating is triggered and it is finished, it is possible that
local regression is less accurate than MLRM. Figure 3.11(b) shows one extreme case. A different
transmission line tripped at t = 50 from normal operating condition (denoted by E). Then the
prediction error of proposed approach significantly increased and even doubled the error of MLRM.
This situation is rare according to Fig.4, and it is captured by locRMSE and self-rectified by one
round of OLPVE augmenting after t = 150 (denoted by A).

In summary, mostly, (C1) and (C2) can effectively capture the unfavorable system changes
and trigger the database updating that ensures the prediction accuracy with certain confidence.
Equipped with this dynamic database, the proposed approach can adapt to the changing condition
of system and achieves better prediction accuracy comparing to the static result shown in Table
3.2. During the OLPVE augmenting, the prediction becomes less trustable, but the prediction is

seamless and locRMSE can still give some clue about the prediction error.

3.5.5 Computational and Data Storage Considerations

Analysis of computational and data storage complexity is necessary for a scalable online method.
Here a personal computer with 4 cores, 2.9 GHz CPU and 32 GB memory is used to estimate the
time usages.

(Initial) database building, validation (including hyperparameter tuning), testing and MLRM
training are accomplished off-line. Python and Matlab scripts are written to automate this process,
and normally it takes 1~2 days.

The major concern is in the online phase. First, we need to consider the RAM usage of the
database. If we use double precision to store a number, the RAM usage is roughly (D + D’) x N x 8
bytes, which is 459.25 MB for the REAL system. This is affordable for common EMS server. With
the help of LASSO and the adaptive database, this usage increases sublinearly with the system

size. Second, the time usage for online prediction, mainly the neighbor identification and local
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regression, is the top concern for the whole approach. For REAL system, searching the K-nearest
neighbors using exhaustive NNS algorithm of Matlab takes 0.19 seconds on average, and each
LASSO regression takes less than 0.1 seconds. In general, searching the K-nearest neighbors from
Z € RV*P' could be achieved with time complexity at most O(D’K N log N), and effective LASSO
algorithm like LAR can achieve the same order of computation as a least squares fit, which has
time complexity O(NDZ) for the system has D RPR predictors. The actual time usage of LASSO
also depends on the degree of freedom (DOF) of the local model, which is usually low. In practice,
the time usage is dominated by D. For a system with thousands of generators, pre-selection of
RPRs may be necessary to limit the value of D. Numerous existing feature selection tools can be
used to achieve this goal. In summary, practically each online prediction for a real system can be
achieved within 1 second, neglecting the data collection and communication time. Thus, considering
the space and time complexity, the proposed approach is competent at online application for the

system even much larger than REAL system, from efficiency point of view.

3.6 Conclusion

An online VSM monitoring approaching using local regression with adaptive database is pro-
posed in this work. A database that incorporates a large range of uncertainties is initialized off-line
through the same procedure for MLRM. For a given operating point online, it first identifies its
K-nearest neighbors in the database, then only use these neighbors to train a local predictive model
exclusively for the given operating point. LASSO is used to train the local model. The database is
designed to be self-updating. Two criteria based on the prediction interval (or locRMSE) and the
set of possible influential events, as the updating triggering signals, are proposed to identify the
risky operating condition on which the VSM prediction is unreliable. Then the online PV curve
tracing engine in EMS is supposed to generate operating points relevant to the current one and add
them into the database. Thus, the prediction error can be maintained within given threshold with
certain confidence. The prediction interval is provided simultaneously with the VSM prediction,

which gives the clue about how the prediction can be trusted and where the true value could be.
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Two examples are presented to demonstrate the accuracy, efficiency, adaptability and the scalabil-
ity of the proposed approach.

Generally, local regression suffers the curse of dimensionality. It achieves favorable performance
in our study for the following reasons. First, for a large system, the underlying pattern has local
dimension much lower than the number of predictors. LASSO is applied to utilize this feature and
reduces the dimension of the predictor space towards the local dimension. Second, the adaptive
database keeps filling the neighborhood with new generated data and makes it tight and dense,
which mitigates the curse. Finally, according to test result, our predictive model can be regarded

as structured local model, which is more suitable for high dimensional problem.
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Figure 3.8: Predictions on the 3-bus system. The true VSMs, which have been shown in Figure 3.2,
are plotted with light colors and sphere markers; the corresponding predicted values are plotted
with dark colors and cube markers. (a) VSMs are predicted by a single quadratic MLRM (trained
by LASSO); (b) VSMs are predicted by two quadratic MLRMs (trained by LASSO); (c) VSMs are
predicted by proposed local LASSO regression; (d) VSMs are predicted by proposed local LASSO
regression, after the database is augmented with 100 random operating points under Line 2-3 outage
(generated by applying random perturbations on the load). The training set only contains data of
Normal, G1, and Line 1-3; the validation set contains the data of the former three and G2.
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Figure 3.9: Root-mean-square prediction error over validation set when K and 7 vary. The mini-
mum (the tuned parameters) is marked by the cyan point, which corresponds to K = 325, v = 0.001.
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Figure 3.10: Histogram of the prediction error. (a) is for IEEE 30 system; (b) is for REAL system.
Prediction error = (true VSM — predicted VSM). LASSO is used for MLRM and local regression.
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Figure 3.11: Online adapt to operating condition. (a) IEEE30 system. (b) REAL system. E:
a discrete event; A: a database augmenting. The yellow area shows the prediction band given
by locRMSE. To incorporate load uncertainty, the “true” VSM is the average over 40 randomly
generated LIDs.
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CHAPTER 4. ONLINE VSM ENHANCEMENT VIA MODEL
PREDICTIVE CONTROL ON AGGREGATED THERMOSTATICALLY
CONTROLLED LOADS

In order to maintain the gird stability and security, when VSM, which is monitored in real
time by the proposed approach, is observed or predicted to be lower than the predefined threshold,
prompt control actions are needed to steer the system back to a secure operating condition. This

chapter addresses the problem of online voltage stability control under emergency.

4.1 Introduction to VSM Control by RPR

The influence of reactive power reserves in maintaining adequate voltage control and stability
is widely known [5, 12, 6]. In the United States, NERC has issued standards that require trans-
mission operators to maintain reactive resources to be used in case degenerative system conditions
occur [21, 22]. Section 2.2.1.1 reviewed the voltage stability enhancement methods based on RPR
management. To determine the most effective control actions that reestablish critical RPRs and
VSM during emergency conditions, [113] proposed a consecutive quadratic programming frame-
work which explicitly constrains VSM while minimizing the control cost. It is referred to as the
reference approach in this study. In this section, we first briefly describe the reference approach
and its limitations, then discuss the opportunities to overcome these limitations, which leads to our

new proposed approach.
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4.1.1 Formulation of The Reference Approach
The reference approach formulates the VSM control problem as follows:

Igin AuT RAu

s.t. z + SpAU > Tmin
M + ae’ SpAu > M, (4.1)
Vinin <V + SVAU < Vinax

Umin < U+ Au < Umax ,

T . . .. . .
where u = (P(—;r ,Bl Pll—adv ;ad) is the vector of control variables containing generation dis-

shunt>
patching, shunt switching, active and reactive power load controls; R is a positive definite matrix
containing the cost weights of all control variables; x is the vector of selected PRRs which contribute
the most to the voltage collapse in voltage security assessment (note: in this chapter we will use
z to denote RPR column vector for convenience, whereas in chapter 3 = is the row vector of RPR
observation); Sg = dz/0u and Sy = 0V/0u are the sensitivity matrices of x and V with respect
to control variables, which are implicitly determined by power flow equations; e = (1,1,..., 1)T;
and « is a scalar parameter which reflects the approximate linear relationship between M and the
total critical RPR. Problem (4.1) is a convex quadratic programming problem, which can be solved
efficiently and reliably.

Controls are triggered immediately when any constraint violation is detected. After the opti-
mum of problem (4.1) is solved and applied at time ¢, constraints may still not be satisfied at time
t+ T (due to linearization error), where 7' is the period of control. Thus, several rounds of control
actions, or iterations of control, may be necessary to satisfy all constraints. Numerical tests showed

usually a few (3~4) rounds of control actions are needed to meet the constrains.

In the above formulation, the relationship between M and z is simplified by

AM =« Z Ax; . (4.2)
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The value of « is set to a positive large number at the first iteration of control to prevent M
constraint from binding, and then updated according to equation (4.2) in subsequent iterations of

control, where AM and ) Ax; are supposed to be both monitored by EMS.
i

4.1.2 Limitations of The Reference Approach

There are several limitations in the reference approach.

First, it uses an unnecessarily coarse approrimation of margin sensitivity. Notice that (4.2)
ignores the discrepancies among the selected RPRs — all RPRs are equally weighted in con-
tributing to VSM. In other words, the VSM sensitivity with respect to RPRs are assumed to
be of1,1,...,1,0,0,...,0], where the first several unit elements correspond to the selected critical
RPRs. This is obviously not the case in reality. And more importantly, it does not fully utilize the
RPRs-VSM relationship provided by the VSM monitoring tool, where the weight of each RPR con-
tributed to VSM has been reflected by its coefficient in the predictive model. Thus, the optimality
of control is sacrificed.

Second, the control decision is shortsighted. The framework does not have a look-ahead consid-
eration (decisions are made only based on the difference between the current state and the target),
which leads to several unfavorable consequences. First, it cannot predict the post-control operating
condition, even though a sequence of control actions is necessary to achieve the objective. For
example, loads are naturally evolving, followed by the variation of generation dispatch. However,
they are not considered in the framework, even though they are predictable, and influential to VSM.
This may lead to a suboptimal control, or in the worst case causing the oscillation of operating
condition. Second, intertemporal constraints cannot be well established in such a framework. For
example, there may exist the limits on ramping rate of generations, the limits on the frequency of
switching, and the limits on the amount of load reduction with certain period. All of these limits
cannot be properly considered by an optimization without look-ahead consideration.

Finally, the formulation is self-centered in the sense that it ignores many important external

constraints and the behaviors other relevant controllers. For example, power balance and network

www.manaraa.com



60

constraints are not explicitly considered while active power loads and generations are both supposed
to be fully controlled. Consequently, the control is probably inapplicable, or the control effect can
be overturned after the emergency is eliminated (generations given by economic dispatch or real-
time market on normal condition could be quite different from those given by the VSM control in
emergency, and therefore could draw VSM below the requirement again). Another over-optimistic
assumption that can lead to inapplicable control is that the load reduction can be freely applied
by VSM control. In fact, load shedding is usually regarded as one of the last resorts that saves the
system from large-area blackout, so they can only be applied when specific standards or criteria
are satisfied [140, 141]. In today’s power system operation, these standards or criteria usually do
not include VSM requirement. Last but not least, the VSM controller is probably not granted the
priority to overwrite all other operating controllers, but the reference approach does not provide

the flexility to consider the coordination with other controllers.

4.1.3 Objective of The Proposed Approach

To address the shortcomings of the reference approach discussed in the previous section, and
based on the discussion in 1.1.6, 1.1.7, this work proposes an online optimal control strategy for
ISO control center that (i) explicitly involves VSM constraint based on the local predictive model
given by (3.13) instead of the second constraint in (4.1), (ii) predicts the behaviors of other relevant
controllers and the evolvement of operating condition via looking ahead, (iii) engages in a more
flexible demand control measure, and (iv) fits in the time framework of economic dispatch or real-
time market (solve and apply the optimal control in near-real-time, i.e., every 5-15 minutes). The
proposed approach is expected to be a novel VSM online control strategy which is effective in an

uncertain, non-stationary, and interactive operating environment.

4.1.4 Sketch of The Research Tasks

Figure 4.1 gives the preview of the major parts of this chapter. It sketches the research problems

and the main techniques we proposed to resolve the problems. Particularly, after we obtain the VSM
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Figure 4.1: A sketch of the research tasks. The PV curve is based on the load increase pattern given
by the load forecasting, where Py corresponds to the current operating point, and Py corresponds
to an operating point in the prediction horizon. The three blocks correspond to the following three
sections.

prediction using the proposed VSM monitoring tool, we need a proactive controller that can look
ahead and make a plan for the near future. Load evolvement can be obtained from load forecasting.
But how can we predict the operating point and the VSM based on the load forecasting? If VSM
exceeds the limit in this prediction, what is the optimal control action to steer it back (see the PV
curve)? Finally, how do we realize the optimal control action to the real system?

The following three sections answer these questions. Section 4.2 makes necessary improvements
on the VSM sensitivity given by the VSM predictive model, which enables VSM prediction for
control. Section 4.3 engages in demand response (DR) through DR aggregator as an effective and
economical demand control measure. Section 4.4 introduces model predictive control (MPC) as a
flexible framework to design the look-ahead optimal controller considering the evolvement of the
operating conditions.

In the rest of the chapter, section 4.5 summarizes the control procedure based on the proposed

techniques, then the approach is demonstrated in 4.6, followed by a brief conclusion in 4.7.
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4.2 Local Linear Formulation of VSM

To design a VSM state-triggered feedback controller, the first step is to build an observer,
i.e., a VSM monitoring tool that can quickly evaluate VSM as well as its sensitivity information
to support gradient-based optimization techniques. However, one inherent challenge for VSM-
constrained optimization or optimal control problem is that VSM is intractable in representation
and evaluation. Section 3.1.2 discussed the difficulty involved in expressing VSM in an explicit
form.Most of the existing methods for this purpose and concluded that they do not fit the goal of
designing of a near-real-time controller.

The reference approach tackled the problem by equally weighting the selected RPRs, such that
the VSM sensitivity vector with respect to selected RPRs is simplified to a scalar VSM sensitivity
with respect to the total selected RPR. As mentioned in 4.1.2, this simplification is unnecessary
and weakens the optimality. In fact, when the online VSM monitoring tool proposed in 3 is applied,
a finer approximation of VSM as a linear function of RPRs, i.e., the local VSM predictive model

(3.13), is available. Let’s repeat (3.13) here for convenience:

My = w(zo) M + :UGBO. (3.13 revisited)

By weights the contributions of RPRs on VSM, assuming the operating point is sampled from the
population of the training database.

However, directly using this predictive model for control may cause problems. The next sections,
4.2.1, 4.2.2, and 4.2.3, introduces the three key modifications on the VSM predictive model that

improve its performance in control.

4.2.1 Shrink The Effective Domain of Control Action via PCA

First, we observed that when there exists collinearity among the RPRs, the coefficients may lead
to unreasonable control actions. This issue can be shown in Figure 4.2. Without loss of generality,
suppose there are two RPRs selected as the VSM predictors, and let X’ = [X{, X/}] denote the

design matrix for linear regression, M’ denote the VSM vector as training labels. Notice that
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Figure 4.2: Ilustration of the problem caused by collinearity.

they have been standardized to have zero means (see (3.10) and (3.11) for details). The figure is
plotted on the plane spanned by X{ and Xj5. MY, (red) denotes the orthogonal projection of M’
into this spanned subspace. Linear regression using OLS simply seek the linear combination of X}
and X/ that equals to MY%.,. The coefficients Bl and 32 can be easily obtained in the figure using
parallelogram law, and the blue vectors shows the two components corresponding to the basis X7
and X). LASSO penalizes the L; norm of the coefficient vector, which could push one or both
coefficients to zero depending on the regularization factor (see 3.2.2). But that is not always the
case (in fact this is unfavorable for control since it implies the control actions will only target on
one RPR for VSM control). Here let’s consider the situation where both coefficients are nonzero.
In this case, the blue vectors in Figure 4.2 will shrink with some extent, but Bl and Bg will not
change the signs.

Notice that /5’1 is negative. It correctly reflects the collinearity between the two RPRs in the
sample population of the training database. And it is valid when two RPRs change coherently as
they usually did in the training database (usually they change in the same direction — all RPRs
decrease when loads increase). However, in the control problem, the two RPRs can be manipulated
independently, since the number of control variables (the controllable loads in this work) is usually
much larger than the number of RPRs. Thus, when X can be controlled independently, B <0
means one can increase VSM by (only) drawing down the RPR of the first generator, which is

obviously unreasonable and could cause the VSM changes in the unexpected direction.
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To resolve this issue, PCA can be applied on X'’ before regression to eliminate the collinearity
among the predictors. Then, a local regression, separated from the one for VSM prediction but
through the same techniques, is conducted on the PCs exclusively to obtain the coefficients for
control purpose.

However, if all PCs are preserved as predictors (no feature selection), PCA is simply applying
an orthogonal transformation on the coordinate system, which indeed changes nothing physically.

Based on (3.13), denote the linearized relationship between VSM and the control actions as
AM = BT SrAu, (4.3)

where S is the sensitivity matrix of RPRs with respect to the control variable vector u. It is trivial
to show that without feature selection, (4.3) is invariant after PCA, indicating that the potential of
unreasonable control actions still exits. Therefore, the problem observed in Figure 4.2 essentially
is not caused by the collinearity among predictors.

Instead, the essential reason is that the control action could violate the assumption on the
sparse distribution of operating points. For VSM prediction, this underlying assumption plays
an important role. Notice that the number of RPRs is usually much smaller than the degree of
freedom (DOF) of the operating state. Thus, strictly, VSM cannot be uniquely determined by
RPRs (see 3.1.2 for details). In this case, how can we find a predictive model that maps RPRs to
VSM? The rationale is based on the fact that the practical operating points of power system are
statistically distributed on a manifold with a much smaller dimension than the space of operating
points. In other words, the states of an operating point, including the states of control variables,
are highly correlated in a statistical sense. In addition, when predicting the VSM for the current
operating point, we assume it is a sample from the population represented by the training database.
Therefore, the correlation among the operating states can be assumed to be also valid for the current
operating point. It is this assumption that allows us to predict VSM using much less predictors
(less than the true DOF of the operating state).

However, when the control is to be determined for the current condition, the control action is

andecisioninstead-of-a-random; variable that subjects to certain distribution. It is not constrained
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by the sparse population distribution assumed for VSM prediction, and has its full DOF. The
contradiction occurs when one is making decisions to achieve a specific consequence by assuming
he will act like before. Metaphorically speaking, suppose Nick usually wears red shirt when he is
happy, and wears black when he is not. In addition, he usually buys two burgers for lunch when
he is happy, whereas just one when he is not so happy. Thus, we can predict today’s lunch bill
for Nick according to whether he wears red or black in the motoring. If Nick wants to minimize
today’s lunch bill, the rational decision would be directly buy one burger for lunch. The story
will be ridiculous if Nick decides to minimize his lunch bill only through wearing a black shirt, or
making himself unhappy (obeying his behavior pattern in history). In conclusion, prediction can
utilize correlation, but control should follow causality.

Correlation sometimes could become (or has the same effect of) causality when the deci-
sion/behavior space is restricted. In the Nick’s story, suppose he signed a contract with the burger
shop saying that (i) to save time, a cashier can directly deduct money of two burgers from Nick’s
account when he see Nick is in red, and (ii) extra two dollars will be charged for canceling that
quick order. Then, the rational decision for Nick to reduce bill, is to wear a black shirt. By signing
the contract, the effective domain of Nick’s behavior (the set of rational behaviors for the sake of
saving money) is shrunk (e.g., he will never wear a red shirt then buy one burger, even though this
action is still a feasible one).

Similarly, we can resolve the issue in the control problem to a great extent, by shrinking the
effective domain of control action via PCA feature selection. Figure 4.3 shows a typical scatter
plots of VSM versus all six PCs of an operating point within the neighborhood, for IEEE 30-bus
system. It seems that the first two PCs (explained 87% of the predictor variance) show physically
explainable linear correlation with VSM. Thus, if we shrink the effective domain of control actions

to
AU = {Au : SpRAu € Range[C]} , (4.4)

where Cj is a matrix containing the first one or two columns of the PCA coefficient matrix (also

called loadings).and Range[Csl. is its range space, then it will be less likely that the control action
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Figure 4.3: A typical scatter plots of VSM versus all principle components (PCs) for the neighbors
of an operating point.

causes the VSM changes in an unexpected direction. Because in most cases, the control action that
causes the simultaneous decreasing of nearly all RPRs (i.e., RPR changes that fall into Range[Cs5])
does reduce VSM, and vise versa. The shrinkage can be realized by only using the first one or two

PCs as the predictors in the local regression. Denote the result by [3 pc. Then we have
AM = B}oC] SpAu = BT SpAu, (4.5)
where
Be = CsBpc (4.6)

is the coefficient vector used in control. As a result, the components of SpAwu that are perpendicular
to Range[C;] are ineffective (although they are still feasible) for controlling VSM, and will be shrunk
since ||Au/| is penalized in the objective of the optimal control. Admittedly, shrinking the effective

ifices the optimality of control, but as discussed above, it is a necessary
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sacrifice to obtain a reliable control, when the sensitivities of VSM with respect to control actions

cannot be directly acquired in real time.

4.2.2 Equally Weight The Neighbors

The proposed VSM monitoring approach involves the kernel weights of neighbors to leverage the
locality of underlying pattern, and its effectiveness has been verified [131]. However, the objective
of many local regression techniques including the kernel weights, is to give an accurate prediction
(zero-order information of the underlying model) at the neighborhood center, exclusively for the
given input. Essentially, they are not responsible to give an accurate representation of the response
sensitivities with respect to the inputs (first-order information). In other words, the purpose of
those techniques is more predicting than explaining. However, the validity of the model coefficients
within a neighborhood is critical for the control problem, where the operating point is moving in
the neighborhood and guided by the model coefficients. This disagreement of goals sometimes leads
to unfavorable control actions.

Figure 4.4 shows an example. From the scatter plot we can clearly see that VSM is increasing
with the first principle component, and this is verified by the coefficients given by OLS or LASSO
with equal weights. However, when kernel weights are applied, the sign of the coefficient is reversed
due to the distorted empirical distribution. In this case, the weighted local model gave a more
accurate VSM prediction at the center, but failed to capture the trend of VSM in the neighborhood.
Consequently, the control action based on this coefficient will try to increase VSM via drawing down
all RPRs, which is obviously unreasonable.

Thus, to achieve more reliable coefficients, the local regression for the control purpose should be
conducted with equal weights. Besides, the regularization techniques like LASSO in our proposed

approach should also be used to reduce the variance of the coefficients.
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Figure 4.4: Tllustration of the problem caused by kernel weights. LASSO is used in the regression.
Using equal weights (red) gives an increasing model which correctly captures the data pattern.
Using kernel weights (green) gives a decreasing model.

4.2.3 Correct The VSM Model Coefficients via Adaptive and Robust Re-scaling

There are many sources of the coefficient bias. Some of them, including the concept drift (the
discrepancy of underlying pattern between the database and the online operating condition) and
the high DOF of control, have been mitigated by our proposed approaches, but theoretically cannot
be totally eliminated. To reduce their unfavorable effects, for VSM prediction problem, we focus
on fully utilizing the data and the prior knowledge. But for VSM control, fortunately, we have
more opportunity to do ad-hoc adjustment through a few of try-and-correct iterations, until the
expected VSM is achieved.

The reference approach involves the response from the real power system in this try-and-correct
loop — a few rounds of control action are evaluated and applied to the system until no constraints
are violated. However, before the control action is applied, such a correction actually can be done

using the response from the nonlinear model of the system. The nonlinear model is too complex to
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be included in the online optimal control formulation, but it is available for simulating the system
response. In particular, EMS has the online power flow or optimal power flow model that is able
to simulate the operating point in a what-if scenario. Then, given the online measurements z""at-if
corresponding to the operating point, the VSM, M (that‘if), can be predicted using the proposed
VSM monitoring tool. M (that'if), though still a model-based prediction, is given by the nonlinear
system model and VSM estimator (the predictive model (3.13) is esstially nonlinear in zp). Thus, it
is usually more accurate than the one given by the linear predictive model used in optimal control
formulation (see 4.4.6 ), and can be used as the reference for correction.

The reference approach correct the VSM predictive model simply via re-scaling the coefficient

vector. In particular, for k =0,1,...

ol = a large positive number (4.7)
[k+1]
oz[k“] _ A]\[43,ct1]1a1 (4 8)
k+1 :
A]\4predicted
[k+1] (k]
_ Mactual — Mactual (4 9)
A k+1 k ’ )
5[k]T [x:[ictusll - xgc}tual}

where « is defined in (4.2); the superscript [k| indicates the step of control actions; and = denotes

the RPRs vector, as it is in section 3.2.1; Myctua1 can be obtained by any online VSM estimator; B

in the reference approach, as shown in (4.2), is simply [1,1,..., 1]T; Tactual 18 online monitored.
Our proposed approach leverages the nonlinear system model and VSM estimator to do this

iteration within one control step before the control action is actually applied. The VSM local linear

predictive model for control with a scaling factor o can be written as:
M =af] Az + My , (4.10)

where Bc is the coefficient vector for control, given by (4.6) and with the modification described in

section 4.2.2; My is the VSM of current operating point. « is iteratively improved in the correction
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process as follows. For a fixed control step k, and the correction step j = 0,1,..., Niy,
1 k=0
k0l — (4.11)
a[k—l][ﬁnal} E>0
(kll7+1]
alfll+1 — 7AMH[<;€T[HI§]T (4.12)
AMIinefar
(k][i+1] (K]
_ Mnonjlinear B Mactual (4 13)
B[k]T LH+ K] ] ' ‘
c linear actual

where Ny, is a parameter that limits the number of corrections; the superscript [£][j] indicates
the correction step j for the control step k; the superscript [k — 1][final] indicates the « finally
used in the k — 1 control step; the subscript “linear” indicates the value given by the linear VSM
predictive model used in control optimization; the subscript “nonlinear” indicates the value given
by the nonlinear system model and the proposed VSM prediction tool. The simulated VSM on

2 H+1]

correction step j+1, M . -

is given by the following procedure: (1) use al¥ll as o in (4.10); (2)
solve the optimal control based on (4.10); (3) on the EMS simulation platform, apply the optimal
control on the current operating point (it is on control step k) and get the post-control operating

point via simulation for one control time-step; (4) collect zp and zp from the operating point, and

feed them into (3.13) to get Mr[ll:)]rg]l;ir This iterative correction process will terminate when

IR SN 17| I
j = Ntrya (414)

where € > 0 is a tolerance parameter.

On this basis, we further observed that the natural load evolvement (which usually follows
the sparse distribution assumption mentioned in section 4.2.1 and can be forecasted) and the
control action (which is essentially free) sometimes contribute to VSM change in different patterns.
Considering this fact, we split Az in (4.10) into two parts, and use a separate scaling factor for

each to correct the coefficient vector:

M = O‘xB(—;rAl'forecasted + O‘uﬁ(—;rAmcontrolled + MO y (415)
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where the subscripts “forecasted” and “controlled” indicate the changes due to forecasted natural
evolvement of loads and the control action respectively; a, and «, are the two independent scaling

factors. Similarly, they can be iteratively improved by

1 k=0
altlo] (4.16)
a[xk—l][ﬁnal] E>0
Ap ]
[K][i+1] _ nonlinear, forecasted (4 17)
@] = .
x (k17 +1]
Ajwlinezlr, forecasted
[k] [{'+1] f ted [k}t 1
_ non 1nea1Ar7 orecaste actua , (4.].8)
AEIT | [k][F+1 k
B‘E ] [xl[iigar, }forecasted - x[ac]tual]
and
1 k=0
NN (4.19)
aq[jkfl][ﬁnal} E>0
. []1‘+1] lled
[k] [j+1] _ nonlinear, controlle (4 20)
« - .
u (k][5 +1]
A]\4111&6]31, controlled
. [JI—H] trolled ~ [k}t 1
o nonlinear, controlle actua
—AKT[ K]+ (k] ' (421)
c linear, controlled xactual]

Again, “forecasted” means holding the control (no further action on the current step) and counting
only the system changes due to forecasted load changes, whereas “controlled” means freezing the
natural load changes and only counting the system changes due to the control action of the current
step. Thus, the procedure of iteration is almost the same as that for single scaling factor, except

that in the simulation step, hold the control u to obtain Mgﬂi{;iir forecasted

L+1]

nonlinear, controlled*

whereas freeze the

nature load evolvement and apply the control action to obtain In practice, for

each correction step, we first do simulation with both natural load evolvement and control action to

M+

nonlinear*

get Terminate the correction process if the criteria (4.14) have been satisfied. Otherwise,

do the simulation of “forecasted” case. Then the simulation of “controlled” case can be omitted by
: (k115 +1] ~ (k] [7+1] (k115 +1]

adoptlng AMnonlinear, controlled ™ A]\4nonlinear - AMnonlinear, forecasted "

We also observed that «, and «, sometimes (although not often) rise to a very large number

following-the-correction-process mentioned above. This happens when (i) the VSM predictive
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model is inaccurate, or (ii) the natural load evolvement or the control action can cause a normal
change of VSM, but occasionally will not impact Axforecasted OF AZcontrolled t00 much, or (iii) the
natural load evolvement or the control action can cause a normal change of VSM, but AZforecasted
or AZcontrolled 18 almost orthogonal to Bc. In these cases, it makes the control non-robust to the
error of model and measurements and less reliable. For example, if the nonlinear system model or
the VSM monitoring tool used for simulation contains some error, then the VSM change could be
significantly over-/under-estimated in the control optimization; more importantly, even if they are
accurate in predicting the VSM change for the current control step, they could make large errors
in the future control steps in the prediction horizon, which finally makes the control optimization
infeasible or suboptimal.

To make the scaling factors more robust, just like we use LASSO to reduce the variance of
B and improve the robustness, here we can add a proper regularization in the correction process.

Take «, for example. Equation (4.17) can be equivalently written as

K)[j+1] _ : (k1l7+1] (k117 +1]
ag: G+ - argmctn ‘AMnonlinear, forecasted aAMlinear, forecasted (422)
Add a regularization term on the objective gives
: (k][5 +1] (k][5 +1]
IIlO}Il ’AMnonlinear, forecasted aAMlinear, forecasted +o0s (4‘23)
s.t. HQBCTSRHI —s<k, (4.24)
$s>0. (4.25)

where Sk is the sensitivity matrix of RPRs with respect to the loads; s is the slack variable; k
is a constant parameter; ¢ is the regularization factor; so aBZ Sk represents the sensitivity vector
of VSM with respect to the loads. For «,, simply replace “forecasted” by “controlled” in the
formulation above. Solving the problem is trivial for standard optimization solvers. To derive
a meaningful k, consider how much VSM change can be actually made by a load disturbance.

According to the definition of VSM, for a specific LID, denote the VSM of the base point as

My = |[P.— Py, - (4.26)
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where P, is the load vector of the critical point; Py is the load vector of the base point. Then,
when a small load perturbation 0 Py is applied to the system, P, will move to P.+ 0 P., and My will

become to My + M. Thus we have

[0M| = [||[Pe + 0P — Py — 6 Polly — [|1Pe — Folly]
< ”5Pc - 5P0||1
< 6P|y + [[0Folly

<@+r) [0l - (4.27)
where 7 = || FP||; / |[0P]|;.- On the other hand, according to (4.10), |0M| can be predicted by

6M]| = \aﬁj SR(SPO‘
< HaBstul NN6Rolly (4.28)
and the equality can be achieved for certain 6 Py. Thus, if Haﬂj S RH1 > (14 r), there will be some

0Py that can cause the predicted VSM change exceeds its actual limit. Thus, it is meaningful to

let
k=14+r (4.29)

Suppose the manifold of critical points in the load space does not change significantly due to d Py,
and the manifold is sufficiently “flat” surrounding P,, then r should be small. In the tests we use
r =1, such that kK = 2. p can be tuned in off-line simulations based the performance of control. In
the tests we use o = 0.2.

The scaling factors given by the optimization probably sacrifices some accuracy of the predicted

VSM in control optimization, but it enhances the robustness of the predictive model.

4.3 Utilization of DR Aggregator With Customer Dissatisfaction Constraint

It has been shown that load reduction is an effective measure to promptly mitigate voltage
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is one of the main measures for stability control under emergency that is running in the EMSs all
over the world. However, traditional stability and security control methodologies based on load
shedding are generally:

(i) Reactive rather than proactive, as they usually operate only when the operating condition
satisfies certain criteria determined from offline studies [140, 141];

(ii) Parsimonious, as they usually attempt to minimize the amount of load shedding based on
heuristics.

This tendency can sometimes have grave consequences for the system. Many studies [142, 143]
on cascading and large blackout events demonstrated that promptly shedding a certain amount
(usually small) of load at the early stage of emergency would have prevented the cascading failures
and might have saved the system from a blackout.

The main reason for this tendency is that load shedding is costly. [144] estimated that the
national cost of power interruptions to electricity customers of the U.S. in 2015 is $59 billion, and
the average cost per MWh annual sales for commercial customers is $31.

These facts motivate people to seek the alternative demand reduction strategy to reduce the
cost of the traditional load shedding. Demand response (DR) provides ample opportunities to

achieve a more flexible demand control and significantly reduce the cost.

4.3.1 DR and DR Aggregator

In DR programs, customers are getting incentives to allow their loads being controlled as spec-
ified in their contracts or in the DR program specific rules. The contract also involves the control
restrictions and limitation such as the number of load interruptions, time limitations, and the com-
fort limits. Load-acceptability is facilitated by connecting the end-users loads with fast monitoring
and control infrastructure. The smart grids and the recent advancements in communication and
control systems at the distribution side, such as the Advanced Metering Infrastructure (AMI) and
the programmable thermostats, facilitate the deployment of the DR control and make it feasible

even over a wide geographical areas [145]. The most prevailing loads at the distribution networks
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are the Thermostatically Controlled Loads (TCLs) such as air-conditioners, space heaters, and
water heaters [146]. The large number of these devices makes the majority of energy consumption
stems from the TCLs operation.

[143] developed an extended Markov model (EMM) to represent the aggregated dynamic be-
havior of a large number of distributed TCLs. A MPC framework is also developed based on the
EMM to sculpt a DR aggregator that controls the aggregated TCLs at the substation level. It
utilizes the ON/OFF switching capability to determine the optimal sequential set-point control law
and curb down the power oscillations. Equipped with the DR aggregator, the aggregated load at
the substation can track the reference power given by ISO control center with neglectable delay
and oscillations, thus becomes a dispatchable source for ISO.

Using DR aggregator can significantly reduce the cost of load reduction. First, it only impacts
TCLs whose effect (e.g. the in-door temperature) will not be significantly changed or even not be
noticeable due to the brief period of outage. More importantly, the DR controller that combines
ON/OFF and set-point controls can further reduce the loss and interruption caused by TCL reduc-
tion by means of (i) minimizing the ON/OFF times which is a major factor of the life expectancy
of devices, and (ii) eliminating the abrupt change or oscillation of power caused by naive ON/OFF
control (e.g. the cold load pickup issue). As a result, the stability and security control based on
the DR aggregator can be more flexible and effective in the sense that (i) load reduction can be
conducted promptly or even preventively (proactive control), and (ii) the amount of load reduction

can be more aggressive to guarantee the emergency is reliably eliminated.

4.3.2 Introducing The Constraint of Customer Dissatisfaction

The overarching goal of the DR aggregator is to develop a framework to efficiently coordinate
participation of a large number of distributed DR resources present in the hierarchical network.
The large quantity and diversity of the TCL behaviors under a substation are taken care of by a
DR aggregator, thus basically hidden and decoupled from the ISO central controller. Benefitting

from this hierarchical control decomposition, from long-term point of view, the central controller
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at ISO controls the aggregated TCLs through DR aggregator is almost like controlling a single
dispatchable power source. For each control step, the aggregators of all substations first submit
their applicable ranges of reference power to the central controller. The central controller then
determines the expected loads at the substations and send them as the reference commands to
the aggregators. Finally, the aggregators execute the commands and achieve the reference powers
within one control time-step.

Unfortunately, not all inner constraints of TCLs can (or should) be hidden from the central
controller or simplified as an instant (only related to the current control step) feasible range of the
reference power. In this work, we particularly consider the constraint of customer dissatisfaction
as an example.

The biggest advantage in utilizing the TCLs is the inherent thermal storage capability. Due to
the inertia of the thermal storage, short period power outage is even unnoticeable to the customer.
However, sustained reduction of the power demand will finally discomfort a customer. In the context
of TCL control, the in-door temperature deviation from the customer’s preference, or an increasing
function of this value (e.g., square), is widely used in the literature to measure the “discomfort
level” of a customer. But from the perspective of human perception, within a reasonable range,
it is the cumulative discomfort temperature that really matters to the customer. For example, a
reasonable description of a customer’s temperature tolerance could be “within one hour, someone
can tolerate 100 °F for 10 minutes, 90 °F for 15 minutes, 80 °F for 30 minutes, and 75 °F for 60
minutes”. People are annoyed if their preferred temperature setting can never be achieved even
though the deviation is not big, and possibly takeover the control from the aggregator in that
case. Thus, the real constraint of customer discomfort due to TCL control is time-related, i.e., an
intertemporal constraint. In order to correctly reflect this fact, we use the cumulative discomfort,
the time integral of discomfort level, to measure the negative utility of DR participation, and call
it customer dissatisfaction. This idea is implied in the literature [143].

Another fact related to the customer dissatisfaction is that it is naturally released with time.

For example, people almost “forget” the discomfort temperature experienced in the previous day.

www.manaraa.com



77

The real mechanism of forgetting is a complex science problem. In this work, we simply model it as
a continuously exponential receding process that can be mathematically described as a first order
ordinary differential/difference equation (ODE).

Notice that the time framework related to the customer dissatisfaction may range from minutes
to hours as in the above example. But the time framework of the DR aggregator’s MPC is on the
seconds level. That implies the customer dissatisfaction constraint cannot be directly tackled by the
DR aggregator. That is to say, DR aggregator’s MPC with only a minute prediction horizon, cannot
give a preventive feasible range of the reference power, taking into consideration the intertemporal
constraint over an hour. Thus, this constraint must be respected and managed by the ISO central
controller whose time formwork can reaches one hour or more.

In order to be considered in the central control, the customer dissatisfaction must be aggregated
at the substation level. This should be a routine of DR aggregator. The DR aggregator proposed
by [147] can aggregate the discomfort level and the customer dissatisfaction though the weighted
(based on thermal capacity) average of individual customers. In this work, we assume the DR
aggregator has such a capability to aggregate the discomfort level and the customer dissatisfaction.

In this work, we simply use temperature deviation from the preference to represent the discom-
fort level. For the ith aggregator, Denote the aggregated discomfort level as T} ; in °C, and denote
the aggregated customer dissatisfaction as R;. The constraint on R; in the predictive model of

central controller can be formulated by

releasing accumulation
Ri(k+1) = ap, - Ri(k)+ Tgi(k)-h (4.30)
Td’i(k + 1) = Td’i(k) + (1 - OJTJ') [T]i . Pv,i(k + 1) - Td’i(k)] (4.31)
‘Rz(k)’ < Ri,maX7 (432)

where ar; € [0,1) is the time constant (particularly, the forgetting factor) that controls the rate of
the natural releasing of R;; h is the control time-step length, typically 5-15 minutes; az; € [0,1) is
the time constant that controls the change rate of discomfort level; 7; < 0 is a constant factor that

linearly maps the load change duo to the control, P, ;, into the equilibrium 7} ; due to the control
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(explained below); R;max > 0 is the limit of aggregated customer dissatisfaction; k indicates the
control step in the prediction horizon of the central controller.

Equation (4.30) defines the customer dissatisfaction R (in °C - min) as the combination of the
two effects: the accumulation of aggregated discomfort level, and the natural releasing with time.
Equation (4.31) gives the relationship between the aggregated discomfort level (T};) and the control
effect on loads (P,) as a first order ODE, where the changing rate is controlled by ar; and the
equilibrium is control by 7; - P, ;(k + 1). Several important considerations about this customer
dissatisfaction model are discussed as follows.

First, a more intuitive formulation for (4.30) could be
Ri(k 4+ 1) = ap - Ri(k) + [Tus(hk)] - b (4.33)

where R is unsigned, and is accumulated no matter whether the temperature is higher or lower than
the preference. However, the absolute value function makes the system nonlinear. What is worse,
it cannot be properly linearized due to the non-smoothness at zero. An important argument here
is that we can reasonably drop the absolute value function. First, the sign of R can be properly
explained: positive R means the customer dissatisfaction due to the high temperature, and negative
R means that due to the low temperature. (4.32) constrains it from both sides (assume the limit
is symmetric). Second, except the sign, (4.30) is the same as (4.33) when T, does not change sign
(one-way accumulation). The two formulations differ the most when Ty frequently changes sign.
However, in our application, this should rarely happen because: (i) the demand of load control,
either for decreasing or increasing the load, is usually one-way in a period of minutes to one hour
(typical prediction horizon of central controller); (ii) the square of Ty is penalized in the objective
(4.52) (described in 4.4), which inherently discourages variation of T;;. One exception happens when
the central MPC controller predict that R will start to increase in the near future (e.g., the peak
load hour is approaching). In this case, (4.30) encourages to pre-cool the rooms, since the negative
cumulation of T in advance can cancel out some of the positive cumulation in the near future. This
is actually a favorable feature that intentionally endowed in many DR programs [148, 149]. Besides,

in-this-case-it-makes-even-more sense than (4.33) from the perspective of human perception — right
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after the room experienced a cold period, the temperature higher than the normal preference will
first bring a favourable feeling via quickly releasing the negative dissatisfaction.

Regarding the relationship between P, and T}, (4.31) is the result of three assumptions. First,
if P, =0 is held (free the load from DR control), the aggregated discomfort level Ty will converge
to zero. Second, the change of T; due to nonzero P, can be approximated by a first order ODE
with the time constant cap. Third, a sustained nonzero P, will shift Ty to a new equilibrium, and
the equilibrium is proportional to P, by a coefficient 1. The third assumption is a widely used
simplification in the literature. ar and 7 can be estimated through off-line data analysis.

agr,; and R; max can be obtained through a questionnaire survey to the customer when signing
the DR program contract. For example, at first, ask the customer what is his/her preference
temperature. Then ask for how long he/she can tolerate for £2°C, £4°C, ... in one hour (or any
other practical resolution). This gives a set of points {(tto1n,Tan)} as the customer’s tolerance
description mentioned early in the example (tio1 is in minitue). Then, we can approximately fit
T4, as a hyperbolic function of i, ,. That is to say, tio1.n X Ty, = c¢. The constant c is an estimate
of his/her Ruyax. Find the value Ty gustained = ¢/60, which means the customer roughly can tolrate
T4 sustained for a very long time. That implies that the accumulation of T systained 15 balanced by

the natrual releasing effect. Thus, ar; can be obtained through
C=aRr;-C + Td,sustained “h. (434)

Finally, aggregate the parameters of customers (based on thermal capacity) to obtain ar; and
Rj max in (4.30) and (4.32).

As mentioned above, from long-term point of view, we assume the aggregator can perfectly follow
the reference power assigned by ISO within one control step (once all constraints are satisfied). That

is to say,

Pyi(k+1) = Pyi(k), (4.35)
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where P, ; is the control input, i.e., the reference power given by the central controller. Thus, (4.31)

can be directly written as

Td,i(k + 1) == Td,z(k) + (1 - aT,i) [77, . Puﬂ(k‘) - sz(k})] . (436)

)

4.4 The MPC Framework

A general description about MPC can be found in Appendix C. The looking ahead and receding
horizon strategy of MPC meet the target of our control design. In particular, (i) by looking ahead,
it can preventively mitigate future degenerative condition and anticipate the responses (static or
dynamic) of the control environment; (ii) by receding horizon, it adapts to the changing environment
and self-corrects the error imposed by the model simplification and uncertainty. Besides, linear
(open-loop) MPC, finally transformed into a convex quadratic programming or linear programming,
can be efficiently solved by standard solvers in real time (several seconds), even for a large system.

This section describes the MPC framework that realizes our proposed control strategy.

4.4.1 Modeling The Load Evolvement

Loads are the major parameters of an operating point considered in this work. In order to
represent the loads in the control formulation, we need to (i) decompose the load into fixed part
and controllable part (TCLs), and (ii) describe their evolvement in the prediction horizon.

Notice that the evolvement of loads is essentially a parameter, rather than a variable in the
predictive model of control. In fact, it is predicted by the external load forecasting, rather than the
predictive model. However, directly using the forecasted load series as parameters will make the
predictive model time-varying and complicate the formulation. In this work, we expand the state
space to include the loads as state variables. In particular, the forecasted load series is fitted by a
first order ODE. Then include this ODE in the predictive model of control.

Another simplification made in this work in that the power factor is fixed. In several studies
[150, 151, 152], controlling the reactive power at the substation has been enabled as a function of

the. aggregator, through the optimal operation of smart inverter based power sources. Thus, the
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proposed approach can be extended to involve the controllable power factor and get rid of this
simplification.

To summarize, the loads in the predictive model can be formulated by

APy i(k+1) = ap; - APyi(k) (4.37)
AP, i(k+1) = ap; - AP, (k) (4.38)
AP.i(k+1) = APy ;(k+1) + P, (k+ 1)

= api - AP, (k) + Ppi(k+1)

= Qi - AP i(k) + Pui(k), (4.39)

where Py ; is the fixed load (note: Py; is evolving; “fixed load” is a widely used term in literature,
in the sense that it is unchangeable for control); P, ; is the forecasted TCLs supposing no control is
applied; P, ; is the actual TCLs containing P, ; and the change casued by contrl, P, ;, so, Pr; + P.;
is the actual total load for the ith aggregator; ay; € [0,1) and a,; € [0, 1) are corresponding time

constants; and

APy (k) = Ppa(k) — Pyi(o) (4.40)
APO,i(k) = Po7i(k) — P07Z'(OO) (4.41)
AP, (k) = P.i(k) — P, ;(00), (4.42)

where Py ;(00) and P,;(00), the extrapolated equilibriums of forecasted load series, are obtained

during the model fitting mentioned above.

4.4.2 Cooperation With Other Controllers

As mentioned early in section 4.1.2, our controller operates in a cooperative environment where
the system response to our control input depends not only on the DR aggregator, but also other
relevant controllers. Thus, to endow our controller with a plug-and-play feature, the predictive
model should try it best to predict the responses of these relevant controllers. In this work, as

ivity matrix to predict the response of the economic dispatch. In
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particular, for the load change APr, we can predict the corresponding change of generation by
AP = SqrL AP, (4.43)

where Sy, is the sensitivity matrix of generations with respect to loads. Sz can be derived from
the optimal solution (primal and dual) of the economic dispatch problem. We suppose Sy, can be
acquired from the economic dispatch or real-time market module. Then, the sensitivity matrices

of voltages and RPRs with respect to the loads can be derived:

0x /0Py, = Sk, + SraScr, = SRAPL (4.44)

oV JOPr, = Sy, + SvaSar. = SvAPL, (4.45)

where Spe and Syg are the sensitivity matrix of RPRs and voltages with respect to generations
respectively, (see [134] for the derivation). To further improve the prediction, the designed controller
can also request a set of feasibility cuts from the economic dispatch module. These cuts can prevent
the control action from violating the security or market constraints considered in economic dispatch.
In our simulation tests shown in 4.6, the OPF function of MatPower [153] is used to represent the
economic dispatch module of EMS.

The strategy shown here can be extended to other relevant controllers inside and outside ISO
control center. All these relevant controllers, including the DR aggregator, can provide the interface
parameters (e.g., R; max, feasibility cuts) that really reflect their capabilities, or they can just provide
reserved parameters for their private concerns (e.g., preserving for other services, hiding confidential
information, etc.). The philosophy of the strategy is: instead of trying to model other controllers’
behaviors as the objective reality, predict their behaviors by treating them as subjective cooperators

and talk to them; instead of regarding the parameters as measurements, regard them as a contract.
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4.4.3 Stability and Security Constraints

Based on (4.15), (4.35), and (4.37)—(4.42), the VSM constraint can be written as

M(k+1) = auf; SrlasAPs(k) + aoAPy(k) — AP;(0) — APy(0)]
Axforece;:ed(k"'_l)
+ B Sk [Pu(k) — Pe(0) + Po(0)] +1M(0) (4.46)

Zcontrolled (k+1)
ME+1) > M,, (4.47)

where Sg is the sensitivity matrix of RPRs with respect to loads; M, is the predefined VSM
requirement; Py, P,, P, and P, in (4.46) are vectors for all loads (suppose every load bus has a
DR aggregator); &, = diag[ay1,ar2, ..., & = diag[ag,1, o2, . . .| are the diagonal matrices of time

constants. The voltage magnitude constraint for load buses can be written as

V(k? + 1) =Sy [dePf(k?) + &OAPO(/C) + Pu(k:) — APf(O) — APC(O)] —l—V((]) (4.48)

APy,
Vmin < V(k + 1) < Vmaxu (449)

where Sy is the sensitivity matrix of voltage magnitudes with respect to the loads; Vinin, Vimax are
the secure limits of voltage magnitudes for all load buses, typical Vi, = 0.95 x 1, and Vipax =

1.05 x 1, where 1 = [1,1,...,1]T.

4.4.4 Constraint of Control Input

As mentioned in 4.4.2, aggregators can submit a feasible range for the reference power based

on several concerns. The designed controller should respect this limit:
Pu,min < Pu < Pu,rnax (450)

where all three terms are vectors for all loads (aggregators). Meanwhile, P, ; cannot cause a negative

P, ;. So, based on (4.39) and (4.42) we have

Qo AP, (k) + Py i(k) + P,i(c0) >0 (4.51)
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4.4.5 Objective Function

A normal quadratic cost function is used as the objective:
H
= [Td(k)TWTTd(k) + P, (k) TW, P (k)] , (4.52)
k=0

where H is the number of steps in the prediction horizon; Ty is the vector of discomfort levels for all
aggregators; P, is the vector of control input (load reduction reference); Wr and W,, are penalty
weight matrix for discomfort level and control actions respectively, and they are typically diagonal
and positive definite. In the test example, the weights for Ty is proportional to the base load, and
the control actions are equally weighted. Wy is normalized such that trace(Wr) = 1. The relative
magnitude of W,, with respect to Wr is tuned based on the control performance in a number of
simulations.

The objective function reflects the negative utility (cost) for the customers participating in
the DR program. The first term measures the negative utility by the in-door temperature de-
viation, whereas the second term measures that by the power change (mainly power reduction).
So, minimizing the first term will enhance customers’ comfort during the demand response, while
minimising the second term leads to a less load change for DR. Based on the assumption of (4.36),
T, is the integral of P,. So the two terms are basically consistent, but emphasizes different aspects
of the customer’s loss due to DR. For a case showing the divergence of the two objectives, see
the discussion on the control behavior at the re-closing moment in 4.6.3.3. The negative utility is
accumulated with time in the prediction horizon.

To leverage the power of looking ahead, H should not be very small (e.g., > 3). Also, it should
not be too large to exceed the valid range of the predictive model (considering the load forecasting
confidence and the linearization error of the predictive model). In the test example H = 6 or 12

(3060 minutes if h = 5).

4.4.6 Overall MPC Formulation

In summary, utilizing the DR aggregator, the proposed controller aims at maintaining VSM

while-minimizing - the-customers’ discomfort and the load reduction (or increase) for DR in near-

www.manaraa.com



85

real-time. the linear MPC formulation for the proposed controller is given by

H
min Y [Td(k:)TWTTd(k:) + Pu(k)TWuPu(k)]
Y k=0
s.t. Vik:

Ri(k+1)=ar; - Ri(k)+ Tq:(k) - h
APp;i(k+1) = ap; - APy;(k)
AP, i(k+1) = ;- AP, (k) + Pyi(k)
Tyi(k+1)=Tai(k) + (1 —ar;) [ - Pui(k) = Ty;(k)]
|Ri(k)| < Rimax
Qi+ AP, (k) + Pui(k) + P i(00) >0
M(k+1) = a,8] Sg [a;AP;(k) + a,AP,(k) — APr(0) — AP,(0)]

+ B S [Pu(k) — Pe(0) + P,(0)] + M (0)

(4.52)

(4.30)
(4.37)
(4.39)
(4.36)
(4.32)

(4.51)

(4.46)

V(k+1) = Sy [a;AP; (k) + GoAPy(k) + Pu(k) — AP;(0) — AP.(0)] + V(0)  (4.48)

M(k+1) > M,
Vmin S V(k + 1) S Vmax

Pu,min S Pu S Pu,max-

(4.47)
(4.49)

(4.50)

To differentiate parameters from optimization variables, all parameters are shown in blue. Equation

(4.30), (4.37), (4.38), (4.39), and (4.36) together form the ODEs of MPC. This convex quadratic

programming can be efficiently solved by the standard solvers, such as CPLEX and Gurobi, within

one minute even for a large-scale system.

In practice, in order to ensure the feasibility of the problem, slack variables can be added to

the inequality constraints while their norms are penalized in the objective. In this way, a nonzero

slack variable in the solution indicates the infeasibility of the original problem, and identifies which

constraint is violated. In this case, other control measures are needed to be engaged in the VSM

maintenance, or the operators can adjust the limits to relax the problem.
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4.5 Summary of The Control Procedure
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Figure 4.5: Overall control procedure. Awu; is the control action for control step j in the MPC
prediction.

The overall procedure of the proposed control approach is shown in Figure 4.6. The control is
running in a receding/rolling horizon manner: (1) update information (basically the states and the
knowledge of the environment); (2) make a plan for the future according to the known information;
(3) implement the first step of the plan; when it is finished, again, (1) update information; ...

Particularly for the proposed control:

1. Knowledge updating in aggregators. At the beginning of each control step, each DR
aggregator (i) collects information about its customers’ in-door temperatures, temperature

preferences, and dissatisfactions, then aggregates them into 7,;(0) and R;(0); (ii) measures
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the current fixed load (Pf;(0)), TCL (F.;(0)), and estimates the TCL if no DR (P, ;(0)); (iii)
based on the load forecasting, estimates Py;(00), Py i(00), ay;, and ag;; (iv) adjusts agg,
ari, My Rimaxs Puimin, and Py i max if needed; (v) submits all these updated values to the

ISO central controller.

2. Knowledge updating in ISO. Meanwhile, the VSM monitoring tool predicts VSM accord-
ing to the current RPRs (x(0)), voltage magnitudes (V' (0)), and active power flows (Phow(0))
given by the state estimation of EMS. The VSM prediction (M (0)) and the voltage magni-

tudes (V(0)) are sent to the central controller.

3. Seeking the optimal control. Then, the central controller (i) updates the initial conditions
and the parameters obtained from the previous two steps; (ii) interactively solves the MPC
problem formulated in 4.4.6 and corrects the scaling factors a, and «, until the stopping
criterion (4.14) is satisfied; (iii) sends the first control actions in the optimal solution to the

corresponding aggregators.

4. Control execution. Each DR Aggregator takes the control input from the central controller
as the reference, runs its DR controller to implement the reference load change. The reference
is held until a new value is received. When time goes to the next control period, go to Step

1.

If operating the control itself imposes considerable cost (mainly in communication and execution
stage), when the system is unstressed, the proposed controller can operate in a standby mode as an
early warning tool. In this situation, DR is not active, so the central controller does not need to
know the states of customer discomfort level and dissatisfaction. Besides, the controller can use the
load forecasting of control center instead of that from the aggregators. In the MPC formulation,
treat all loads from the central load forecasting as TCLs (to give a nonempty feasible region for
P,). Other parameters that should come from aggregators can be set to default values. Thus,
the proposed MPC will be solved without the communication to aggregators. The norm of the

solution optimal control action, suspended in the standby mode, can be used as a control triggering
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signal, because it should be zero when there is no constraint violation in the prediction horizon.
Benefiting from the look-ahead capability, it triggers the control (switches to working mode) before

the violation actually happens.

4.6 Example

The effectiveness of the proposed control approach is demonstrated on the IEEE 30-bus system.

There are 6 generators (RPRs), 21 loads(aggregators), and 24 load buses (PQ buses).

4.6.1 Scenarios

Two simulation scenarios are demonstrated, emphasizing different aspects of the controller’s

behavior.

4.6.1.1 Scenario 1: peak load hours

140 140
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Figure 4.6: Load profiles of Scenario 1. (a) Natural evolvement of all loads (no control applied).
Each curve is for one load. The total load is 283.4 MW at the initial point, and 404.4 MW at the
peak. All loads change proportionally. (b) Components of the largest load (Pf4 + P,4).
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In Scenario 1, the system is supposed to be operating on normal condition of a peak load
day. Then the system rides through the peak load hours (200 minutes) of a roughly 40% demand
increment, with the proposed DR control. The load profiles for this scenario is shown in Figure 4.6.
The power factors are supposed to be fixed. Assume 40% loads are controllable TCLs (see Figure
4.6(b)). All loads change proportionally (with a small random noise). For each load, assume the
changing rate of the TCL part is three times of the changing rate of the fixed part plus a small
random noise (see Figure 4.6(b); the peak of the yellow curve almost doubled the base level).

The load profiles are generated through the following procedure: first set the ay; and «y; for
all aggregators (0.9 plus a small random noise for different aggregators) and keep them invariant;
then set the series of Py ;(00), and P, ;(c0); and finally generate the load profiles shown in Figure
4.6 according to g, i, Pri(00), and P, ;(co) through (4.37) and (4.38). Notice that in practice,
as mentioned in 4.4.1, ay;, 0o, Pfi(00), and P, ;(00) are obtained based on load forecasting, and
updated in every control step (provided by aggregators). But in the test here, to simplify the
scenario generation process, we reversed the process (load forecasting to parameters — parameters

to load profile).
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Figure 4.7: VSM profile of Scenario 1. Each point on the curve is obtained via off-line PV curve
tracing in 40 randomly selected LIDs.
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Given the load profiles, as mentioned in 4.4.2, the generation dispatch is determined by solving
economic dispatch. Then the trajectory of operating point can be obtained. For each operating
point, 40 LIDs are randomly selected (from Gaussian distribution with the base load as the mean)
to conduct PV curve tracing. The average of the 40 VSMs is regarded as the true expectation and
depicted in Figure 4.7. The VSM requirement is set to M, = 620 MW. From the figure we can
see, if no control applied, VSM will decrease to around 570 MW, and violate the VSM requirement

after t = 32.65.

4.6.1.2 Scenario 2: peak load hours + contingency
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Figure 4.8: VSM profile of Scenario 2. Each point on the uncontrolled VSM (black) is obtained via
off-line PV curve tracing in 40 randomly selected LIDs. The yellow dashed curve is the predicted
VSM without database updating, which failed to capture the VSM under contingency. The blue
curve is the predicted VSM with one round of database augmentation conducted after the contin-
gency happens. The time needed for database updating is not shown. As a result, the prediction
(blue curve) dived vertically at t = 25.

In Scenario 2, in order to observe the controller’s behavior under sudden change of VSM, we

further applied a transmission line outage during the peak time in Scenario 1. The line between

Bus 6 and Bus 8 is tripped at ¢t = 25, then reclosed at ¢ = 150. The load profiles are identical to
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Scenario I. The VSM profile without control is shown in Figure 4.8. In practice, operators will set
a lower requirement of VSM under contingency. So, in Scenario 2, M, is set to be 540 MW. The
contingency dropped VSM roughly 100 MW down, thus made it close to the limit.

An important observation in this scenario is, in order to accurately track the post-contingency
VSM, the database updating is needed right after the contingency happens (see section 3.3.2 and
3.5.4). Thus, the control inputs for the DR aggregators should be locked until the database updating
finished (system stability in this period relies on the short-term control tools that are beyond the
scope of this work). Usually, the updating can finish within one control step (100 seconds is assumed

in section 3.5.4).

4.6.2 Parameters

As shown in 4.3.2, ag; and R; max can be obtained through a survey to the costumers, whereas
ar; and n; can be obtained through off-line data analysis and updated online by the aggregators. In
this test example, for ar; and R; max, we reserved that process: first set the agr; for all aggregators
(0.875 plus a small random noise, which means 80% of the dissatisfaction will be released within an
hour if Tj is fixed at zero), then use (4.34) reversely to get R; max, assuming Ty sustained = 1.5°C plus
a random noise. ag; is randomly selected from (0.6,0.7) and kept invariant during the simulation.
n; for the smallest load is set to 5, which means 1 MW load reduction of the smallest load (2.52
MW) will cause on average 5°C in-door temperature increment for the customers of the aggregator.
7; for other loads are inversely proportional to their base loads plus a small random noise.

ay; and a,; have been obtained during the scenario generation (see 4.6.1.1).

To fully utilize the TCLs, we set P, min = —0o. Notice that P, min is still bounded below by
(4.51), the equality holds when the TCL is exhausted for DR control. For aggregator i, we set
Py imax = 0.5, ; initias and keep it invariant, where P, ; initial is the TCL at the initial operating
point.

The prediction horizon H is set to 12.
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4.6.3 Simulation Results

We simulated the evolvement of operating point when the proposed control is applied to the

two scenarios described above. For each control step:

1. With given initial states, solve the MPC problem presented in 4.4.6, with the adaptive cor-

rection described in 4.2.3. The optimal control action for the current step is obtained.

2. Use the ODEs of MPC ((4.30), (4.37), (4.38), (4.39), and (4.36)) to simulate the one-step
changes of the loads, R, and Ty. Regard the results as the true values of the initial states
for the next control step (note: this is an assumption for simulation; in practice the initial
states are the control feedback from the system, monitored and submitted by the aggregators

as described in 4.5).

3. Solve the economic dispatch OPF problem to simulate the generation and voltage responses
to the load changes. Again, regard this simulated result as the true system change. At this
point, the operating point after the current control step, i.e., the initial states of the next

control step, has been obtained.

4. Using RPRs, voltages, and power flows of this operating point as the inputs, predict the
corresponding VSM using the proposed monitoring tool. Regard the result as the true value

(M(0) for the next control step).

For Scenario 1, we further show the control performance when random disturbances are added

to the ODEs of MPC. That is to say, (4.30), (4.37), (4.38), (4.39), and (4.36) become

Ro(k +1) = agy - Ri(k) + Tus(k) - b+ wir (4.53)
APk + 1) = agi - APy i(k) + wis (4.54)
AP, i(k+1) = ao; - AP, (k) + w3 (4.55)
AP ;j(k+1) = - AP, (k) 4+ Pyi(k) + wia (4.56)

Tai(k+1)=Ty(k)+ (1 —ar;) ;- Pui(k) — Tai(k)] +wis . (4.57)
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Figure 4.9: Controlled VSM rides through the peak load hours in Scenario 1.

when they are used in the simulation step 2 listed above, where w; 1 ~ w; 5 are random disturbances.

They represent the differences between the simulation model and the real system.

4.6.3.1 Scenario 1: peak load hours

The controlled VSM in Scenario 1 is shown in Figure 4.9. The controller achieved the goal of
maintaining VSM, and the valley of the uncontrolled VSM profile is shifted. Due to the errors of
linearization and VSM monitoring tool, the controlled VSM is under the limit for some while (note:
this is not a steady bias; the error could be either positive or negative).

The control action (load change reference) and the corresponding controlled total load are shown
in Figure 4.10. From Figure 4.10(b) we can see the control shifted the load peak. This is different
from the peak load shifting service widely implemented in the DR programs. Here the load is

shifted as a result of VSM maintenance.

www.manharaa.com




94

0.5 450 T T T
| \Uncontrolled total
’5 _400f------ -(-;"-'— = *Irz-\-\/ TTTem T
Ea = -
- =
2 =
£ ®©
5 -0.5 S
=] ©
S
- o
B ©
= 5
g g 200 | Controlled 1| ]
515 ; . | &) : TCL total |
b 1 1 1 150F - -- - ---/--r——--- +
1 1 1 1 I 1
_2 1 1 1 100 1 L L
0 50 100 150 200 0 50 100 150 200
Time (minute) Time (minute)

(a) (b)

Figure 4.10: Control actions and total load in Scenario 1.(a) Normalized control actions (P,;).
Each P,; is normalized by P, ; initial- (b) Total load and its two components. The blue curve is the

summation of the orange and the yellow. The uncontrolled total load is also plotted for contrast.

The pre-cool feature (see section 4.3.2), based on the look-ahead capability of MPC, can be
observed in Figure 4.10(b) (see the dashed circle). Notice that VSM does not violate the limit
until ¢ = 32.65 (see Figure 4.7). Thus, without a look-ahead framework, there will be no control
action before that moment. The proposed controller, via looking ahead, predicted the VSM will
violate the limit, and acted in advance. The control actions pre-cooled the rooms to minimize the
overall control cost within the prediction horizon (defined by (4.52)). This can be clearly seen in
Figure 4.11. The in-door temperature deviation is first negative and then positive, thus reduces
the magnitude of customer dissatisfaction.

From Figure 4.11 we can see, with the load reduction, the in-door temperatures deviation rose as

high as 3.5°C. They caused the customer dissatisfaction increased, but some of them were capped
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Figure 4.11: Aggregated customer discomfort level and dissatisfaction in Scenario 1. (a) Aggregated
customer discomfort level (aggregated in-door temperature deviation from the preference. (b)
Normalized aggregated customer dissatisfaction. Each R; is normalized by R; max-

(saturated) at the limits. The limits force the control to use other unsaturated TCLs. It reflects

the cooperation between control center and customers, and the cooperation among the customers.

4.6.3.2 Scenario 1 with random disturbances

We tested the control performance in Scenario 1 under random disturbances. The disturbances
are sampled from independent Gaussian distributions with zero mean. Regarding the standard
deviation, we set 20(w;1] = %5Rimax, 20(wi2] = %5Pi(0), 20(w;3] = 20(w;a] = %5Py(0),
20(w;5 = 0.2, where o[-] denote the standard deviation. That is to say, the disturbances are
symmetrically bounded by those specific numbers with probability 0.95, roughly. %5 error is a
reasonable assumption for the DR related near-real-time load forecasting, based on the number
reported in [154]. The disturbances reflect the discrepancy between the predictive model in MPC

and the reality, which is inevitable in practice.
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Figure 4.12: Controlled VSM in Scenario 1 under random disturbances. 10 instances are presented.

The controlled VSM under disturbances are shown in Figure 4.12. 10 instances are presented.
During the peak time, they are roughly lie in a £20 MW band surround the VSM limit. Some
extremely spike can be prevented by a simple checking logic on the control action, which will not
be concerned in this work. This observation implies that a secure margin for the VSM limit M,
must be considered in practice to incorporate the uncertain disturbance of the system. Estimation
of the error band width based on robust optimization techniques will be considered in future.

Besides, we observed that if the robust regularization for ag, a, (introduced in section 4.2.3)
is not used, the simulation for the random disturbed case fails very often (control action makes

infeasible OPF problem). It implies the necessity of the robust correction strategy.

4.6.3.3 Scenario 2: peak load hours + contingency

The controlled VSM in Scenario 2 is shown in Figure 4.13. The controller successfully main-
tained VSM under the contingency occurs in the peak load time. The “fast cooling” process can
be observed in this case. After the contingency was recovered at ¢ = 150, VSM rose to roughly 620
MW (above the limit) while the loads were decreasing. Then the controller reversed the control

om load reduction to load increase (Figure 4.14), i.e., turning on the
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Figure 4.13: Controlled VSM in Scenario 2.

TCLs or decreasing their temperature set-point, which drew VSM back to the level slightly above
the limit. This load increase will quickly cool down the rooms, which relieves the discomfort of the
customers, and quickly releases the dissatisfaction accumulated during the contingency (see Figure
4.15). The fast cooling process takes only one control step to relief the discomfort levels (see Figure
4.15(a)).

The fast cooling process also shows the necessity of including Ty in the objective in addition to
P,. Without T, in the objective, the optimal control input P, must be zero after the contingency was
recovered, since there was no constraint violated. In this situation, customers suffered unnecessary
discomfort. Besides, since the customer dissatisfaction was quickly released, the DR aggregators

now have more reserved capability if another contingency happens soon.

4.6.4 Simulation Platform and Computational Considerations

The proposed controller is implemented on MATLAB. YALMIP [155] is used to formulate the
MPC problem as a standard quadratic programming and call Gurobi to solve. MatPower and

TSPOPF [156] is used in solving the economic dispatch problem and evaluating the sensitivity
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Figure 4.14: Control actions and total load in Scenario 2.(a) Normalized control actions (P,;).
Each P, ; is normalized by P, ; initial- (b) Total load and its two components. The blue curve is the
summation of the orange and the yellow. The uncontrolled total load is also plotted for contrast.

matrices. PSS/E is used to trace PV curves. Python is used to manipulate PSS/E and interface
PSS/E to Matlab.

A personal computer with 4 cores, 2.9 GHz CPU and 32 GB memory is used to simulate the
control in the test example. Solving the MPC takes less than 0.5 second in the test. Several
seconds may needed for one control step if several correction steps are involved. For the near-
real-time application, solving the MPC is not a very computationally challenging problem even
for a practical size system. [157] shows that a problem with state dimension n, control input
dimension m, and prediction horizon H takes O(H(n + m)?) operations per step in an interior-
point method for MPC. In our problem, there exists the opportunity to significantly reduce the
computationally bounden by adopting distributed MPC techniques, since the states of difference

aggregators are almost decoupled, which leads to a highly sparse constraint matrix. There are a
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Figure 4.15: Aggregated customer discomfort level and dissatisfaction in Scenario 2. (a) Aggregated

customer discomfort level (aggregated in-door temperature deviation from the preference. (b)
Normalized aggregated customer dissatisfaction. Each R; is normalized by R; max-

number of commercial tools specifically for MPC implementation, which have been widely practiced

in industry [158, 159].

4.7 Conclusion

A novel linear MPC-based control approach for maintaining voltage stability margin (VSM) in
near-real-time is proposed in this work. It utilizes the thermostatically controlled loads (TCLs)
through the demand response aggregators (DR aggregators) as the control measure, thus signifi-
cantly reduces the cost of demand side stability control traditionally based on under-voltage/frequency
load shedding. The cumulative discomfort level of customers due to DR is defined as the customer
dissatisfaction and explicitly constrained in the MPC. Thus, the actual influence of DR to the
customers is controlled, and the customers are engaged in DR cooperatively. The proposed con-

troller, running online in a receding horizon manner, maintains VSM while minimizing the overall
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discomfort level and the control action (mainly the load reduction) within the prediction horizon.
The linear predictive model of VSM, which can be provided by the VSM monitoring tool, is utilized
to formulate an explicit VSM constraint in the MPC. An adaptive and robust strategy is proposed
to iteratively correct the VSM predictive model before the optimal control action is applied, which
effectively reduces the control error caused by the discrepancy between the predictive model of
MPC and the reality. The effectiveness of the proposed control approach is demonstrated on IEEE

30-bus system, considering the applications in peak load hours and contingency.
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CHAPTER 5. FINAL CONCLUSIONS

5.1 Final Conclusions

A comprehensive methodology of online long-term voltage stability monitoring and control is
developed for maintaining power system stability and security. New resources for voltage stability
analysis and control, namely the knowledge implicit in the online data, and the load flexibility
provided by demand response, are exploited to provide timely prediction and control of voltage
stability margin (VSM) in an uncertain and non-stationary operating environment.

For real-time VSM monitoring, a machine learning based adaptive approach is proposed. LASSO
is tailored to establish an online local regression method that learns the statistical relationship be-
tween VSM and online measurements including reactive power reserves (RPRs). This relationship,
in form of a local linear predictive model, then can be utilized online to predict VSM as well as
its prediction interval, following the real-time measurements collected by SCADA /EMS in a con-
trol center. A database updating strategy is proposed to further enhance the adaptivity of the
proposed local predictive model. Simulations on several test systems, including a real large-scale
system model from industry, showcases the capability of the proposed VSM monitoring tool in
tracking the VSM under non-stationary operating condition.

For near-real-time VSM control, a model predictive control (MPC) approach is proposed. De-
mand response (DR) of thermostatically controlled loads is utilized through a DR aggregator in
maintaining VSM under emergency. It significantly reduces the cost of demand side stability control
traditionally based on under-voltage/frequency load shedding. Customer dissatisfaction is defined
as the cumulative customer discomfort level. It measures the real impact of the demand control
on DR participants. Using the model parameters provided by the DR aggregators, the aggregated
customer dissatisfaction is explicitly constrained in the MPC to follow the concept of cooperative

control. The local linear predictive model of VSM is utilized to formulate an explicit and convex
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VSM constraint that is originally implicit, nonconvex, and even discontinuous. It can be obtained
from the VSM monitoring tool through a modified procedure, and iteratively corrected through
an adaptive and robust strategy. Without violating the customer dissatisfaction constraint, the
MPC seeks the optimal control input that maintains VSM in the secure range, while minimizing
the overall customer discomfort level and the control actions within the prediction horizon. The
performance of the proposed control in peak load hours and contingency is demonstrated on IEEE
30-bus system.

The proactive, adaptive, and cooperative design of the developed approach extends the existing
researches on online voltage stability monitoring and control. The methodology developed in this
work for VSM, indeed, is general enough to be extended to other long-term stability or security
indices, providing a versatile framework that supports the transmission operators in maintaining

power system stability and security.

5.2 Research Contributions

5.2.1 Adaptive Real-Time VSM Monitoring Approach

1. Established a framework for real-time VSM monitoring that integrates off-line and online
information, via the adaptive regression algorithm (local linear regression) and the adaptive

database. It can provide timely VSM prediction on the changing operating condition.

2. Provided a time-varying estimation of the prediction interval along with the VSM prediction,
which enhances operators’ awareness about how they can trust the VSM prediction and
where the true value of VSM could locate, then the closed-loop corrective adaptation can be

established (bad prediction can be automatically rectified).

3. Combined local linear regression and LASSO via the relative regularization factor, so as to

achieve sufficient scalability for large-scale power systems.

www.manaraa.com



103

5.2.2 MPC And DR Based VSM Enhancement Approach

1. Established a framework for near-real-time VSM enhancement using linear MPC. It maintains
VSM within security limit while minimizing the overall customer discomfort level and control

actions within the prediction horizon.

2. Utilized the VSM predictive model that can be obtained from the proposed VSM monitoring
tool to formulate the local linear VSM constraint. Provided the modification strategies,
namely shrinking the effective domain of control and equally weighting the neighbors, to

make the VSM predictive model suitable for control.

3. Provided an adaptive and robust method to iteratively correct the VSM predictive model in
one control step until reliable control actions are obtained, leveraging the online nonlinear

system model and VSM monitoring tool.

4. Defined customer dissatisfaction as the cumulative customer discomfort level to measure the
real impact of the demand control on DR participants. Then explicitly constrained the

customer dissatisfaction in the control optimization according to customers’ intentions.

5.3 Future Research

5.3.1 Predicting Negative VSM for Diverged What-if Scenarios

Online security assessment usually considers not only the current operating point, but also a
credible set of what-if scenarios (e.g. N—1 contingencies). The proposed VSM monitoring tool
can provide the VSM prediction for a what-if scenario once the power flow solution is provided.
However, some of the what-if conditions may lead to diverged power flow problems. Unfortunately,
it is these scenarios that are concerned most by the operators. Thus, people expect the VSM
monitoring tool can also give negative VSM for these cases to tell how much load reduction is
necessary to achieve an operational state.

Solving the VSM constrained control problem obviously can get such a negative VSM, but it

is time consuming and unsuitable for fast online contingency screening. In principle, the machine
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learning framework proposed in this work is general enough to be used for negative VSM cases once
efficient input features and the training data can be obtained. This is supposed to be a promising

research problem.

5.3.2 Forgetting Mechanism for The Database

Notice that the proposed VSM monitoring approach requires the database stays in the memory
of the computer. So database cannot be augmented infinitely, and we must provide a strategy,
the forgetting mechanism, to clean out ineffective data from the database and release the memory.
Moreover, from a long-term (i.e. years) point of view, the system is evolving: load grows; new
components are commissioned while old ones retire; the network keeps expanding and the topology
is changing. Even within a year, power system operating condition changes seasonally. Thus,
cleaning out the outdated data is actually a way to achieve long-term data adaptivity.

The weights of data points used in local regression provide a pathway to fulfill this goal. The
forgetting effect, reflecting the age (passive, or time-weighted forgetting) or the importance (active,
or error-based forgetting) of data [139], can be modeled by a (or a few) dimension(s) of the neigh-
borhood space, thus, old or rarely-accessed data tend to be far away from the current operating
point. Alternatively, it can be modeled by one separate forgetting factor that modulates the weights
given by KNN and tri-cubic kernel.

The major challenges for realizing forgetting mechanism include: (i) some critical operating con-
ditions, such as the severe contingencies used in off-line initial database generation, may never be
accessed and get older as time goes by, but the forgetting mechanism should preventively preserve
them in the database (some kind of long-term memory is necessary); (ii) it is difficult to system-
atically test and verify the forgetting mechanism. Resolving these issues could yield an effective

forgetting mechanism that further improve the applicability of the VSM monitoring tool.
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5.3.3 Integrating Deep Learning for VSM Prediction

Besides the adaptive approach established in Chapter 3, we are also looking for the opportunity
of using deep learning to build a purely off-line model with better generalization performance as the
alternative for the multi-linear regression method, and finally move towards a hybrid framework to
take advantage of both adaptive model and off-line deep model. We have initialized the application

of convolutional neural network for this purpose in [160].

5.3.4 Upgrading to Robust MPC

Model inaccuracy, as the random disturbance, is inevitable in the predictive model. Although
this inaccuracy is somewhat considered in designing and testing the control approach, it is not
explicated formulated in the control optimization. Robust MPC is supposed to be the proper
framework to explicitly incorporate this uncertainty. The challenge is, the computational burden for
such methods is usually unaffordable for online application. For example, in our preliminary study,
the constraint matrix based on a published closed-loop robust MPC design for IEEE 30-bus system
could have more than 1,000,000 columns. However, due to weak coupling among the aggregators,
there is potential opportunity to utilize the problem structure to significantly reduce the dimension.

Distributed MPC techniques for this purpose could be a profitable research direction.

5.3.5 Integrating Reinforcement Learning for VSM Control

Reinforcement learning is also a very active research field in machine learning which inherently
connects to model predictive control [161, 162]. Some efforts have been made for integrating the
two methodologies [163]. We are interested in exploring the possibility of involving reinforcement
learning in the VSM control problem, either for simply speeding up the solution process of MPC,

or for establishing a hybrid framework leveraging both model and data.
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APPENDIX A. ANALYSIS ON THE FAVORABLE FEATURE OF RPR AS
THE VSM PREDICTOR

EZ0 VZL-6
C | ‘ P+jQ
P+jQ, Xn :

Figure A.1: Single machine - load 2-bus system.

For the 2-bus system shown in Figure A.1, under the voltage base E and the power bases E%X y,

the system equations in per unit quantity are [5]:

p=vsind (A.1)
q=wvcosd —v* (A.2)
gs=1—wvcosd. (A.3)
Given
g =ptane

, where ¢ is the impedance angle of the load, for the high voltage solution branch we have

1 ? 1\ /1 2
<p+ 5tango> +(q5—§> = (isecgo) , (A.4)

or

gs = 1/2 — \/1/4 — ptanp — p?, (A.5)

where 1/4 — ptan ¢ — p? = 0 for the critical point of PV curve. Thus the system always goes to
collapse when ¢s = 1/2, no matter what the load it is. Further when ¢ > 0 is fixed, the p-¢s curve

of the high voltage solution branch is just a section of quarter circular. Further notice that when
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p is fixed, VSM and RPR of this system are just the affine functions of p and ¢, respectively. This
implies that RPR is a good VSM predictor for the 2-bus system.

For multiple-machine system, according to [58], the system can be seen as approximately decou-
pled single-port Thévenin equivalent circuit from each load, when LID is fixed along the direction
of the initial loads. The voltage of the jth equivalent source is E.; = K;Vg, where K is a constant
row vector which can be obtained from the bus-admittance matrix, and Vg is the column vector
of voltages of the generators. Besides, under the assumption we can observe that the ratios among
load bus voltages remain approximately constant with load increasing. In this case, it is trivial to

show that the load current vector I;, can be written as
I, = Alg + BVg, (AG)

where I is the vector of generator currents; A and B can be obtained from the bus-admittance

matrix and the initial load currents. Consequently, we have

Seqj = Feqilig; = Eeqill; = K;Va(Ajle + BjVa)", (A7)

where Seg; is the complex generation of jth equivalent source. Let

a= Va1 /Ver, Ve /Var, - - -, Van/Var) ', (A.8)

where a; = Z60; is the voltage angle difference between the ¢th generator bus and the first generator

bus; ng is the number of generator buses. Then it is trivial to see
i H pH
Seqj = Kjaz Oji Sci + |V | Koo Bj , (A.9)
i=1

where H indicates the conjugate transpose; Sg; is the complex generation of ith generator bus.
By some particular dispatch scheme, voltage angles of generators could be approximately constant;
i.e. «is fixed. In this case, (A.9) implies that the RPR of each equivalent source is just an affine
function of generators RPRs. Choose j to indicate the single port Thévenin equivalent circuit with
lowest VSM. According to the implication of the 2-bus system, the RPR of the jth equivalent

SOUEee; e -the-affine-function; of generators RPRs, can be used as a VSM predictor. For real
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system operation, ¥ , Xy , LID, and « could vary within certain ranges. The conclusion here is

not accurate but it arguably approximates the real situation.

o AJLb
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APPENDIX B. PROCEDURES TO GET THE EMPIRICAL MEAN AND
PREDICTION UPPER BOUND OF PREDICTION ERROR

This appendix devotes to get the blue and the black curve in Figure 3.6, which are used to
estimate the prediction interval. Suppose we have obtained the prediction absolute error |e;| and
the corresponding locRMSE; for all j during the validation, where j is the index for an operating
point in the validation set. This finite set of samples cannot directly gives the empirical mean @ or
the empirical prediction upper bound PB at any given locRMSFE, which is treated as a continuous
variable in Figure 3.6. So we need to smooth the data over locRMSE.

The standardized tri-cubic kernel, similar to the one used in (3.9), can be used for smoothing.

But instead of KNN window function, here we use fixed window width [90]. Therefore, the blue

curve can be obtained by

N’U
[e[(locRMSE) = > w;(locRMSE) - |, (B.1)
j=1

where w; (locRMSE) is the standardized kernel weight of point j with respect to locRMSE as the
neighborhood center (similar to zp in (3.9)). Using the same weights, standard kernel smoothing
estimation can be applied to obtain the inverse cumulative distribution function of |e| conditional
to locRMSE, denoted by F, l;clR usg - ¢l le], where cl is given prediction confidence level (95% is
this work). In Matlab, this can be achieved by the routine ksdensity. Using these notations, we

can formulate the black curve by
PB(locRMSE) = F}, 15116 (0.95) (B.2)

Choosing the best kernel or tuning the smoothing parameters is not a critical issue for our purpose,

especially for this one-dimensional problem. So we omit such details.
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APPENDIX C. FUNDAMENTAL OF MODEL PREDICTIVE CONTROL

Model predictive controllers originally rely on dynamic models of the target system, most often

a linear ordinary difference equation (ODE):

Tnt1 = AnZpn + Bpuy (C.1)
Yn = Cpp (02)
xrog — X() (03)

where z,, € RY is the state variable at time step n, Xg is the known initial value of z,,, u, € RM
is the control input, and y, € R is the output at time step n. All these variables and the
matrixes 4, € RVXN B, € RVXM © e REXN could be time varying. A general optimal feedback

control problem is to find a control law sequence m = {T('J} where ; : REX(n+1) oy RM

Jj= 0 ’
such that the bounded feedback control u,, = 7, ((y0,91, - --,¥yn)) minimize a convex cost function
f (x,u, D) within the control horizon D € N*, where = (g, z1,...,2p) € RN*XPHD 4 —

c RMXD

(ug,u1,...,up—1) give the states and control inputs at all time steps within the horizon.

f is usually of the quadratic form

(z,u, D) Z:c Qnry + Z Uy, T Roun (C4)
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where Q,, € RV*N and R,, € RM*M are positive semidefinite matrixes. Thus, the optimal feedback

control problem for n =0,1,..., D can be formulated by

. D— 1
Inﬂ}n Zn 0 nann+Z TRnun

s.t. forall0<n<D-1:

Tn+1 = Apzp+ Bhuy
Yn = Chay (C.5)
zo = Xp
un = 7 (Y05, Yn))

bn <up <cp

Comparing to open-loop control, engineers normally prefer closed-loop (feedback) scheme for
general control problem since open-loop control doesn’t take into account the unknown details of
system and unforseen disturbances. The dynamics ODE included in the MPC scheme remedies
this disadvantage to some extend by utilizing the knowledge of the system. However, the closed-
loop solution still has the advantages that 1) sequentially updated output measurement makes the
solution adaptive to unforseen disturbances, 2) once the control law is known (closed form solution
or reduced to a simpler problem), we don’t need to solve the original Problem (C.5) again for new
initial states if the system structure is unchanged, and 3) the system is autonomous so that the
stability of the controlling system can be analyzed. When closed-loop scheme is not available, we

can simply consider the open-loop form of Problem (C.5):

. D— 1
min Zn 0%y TQnan + D ome TRnun

s.t. forall0<n<D-1:

Tpt1 = Apxn+ Bruy (C6)
Yn = Chay
zo = Xp

by, <u, <e,

A typical MPC applies the first several optimal control steps of Problem (C.5) or (C.6),

1, in receding horizon: (a) at time step ¢, solving Problem (C.5)
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or (C.6) forn =t,t+1,...,t4+D; (b) apply control uj,uy,y,...,u;, p at time step t,t+1,...,t+P
respectively; increase ¢ to t + P and replace Xy by x4 p, then go back to step (a). This procedure
vividly describes the decision making process of human being in practice: we look ahead, make a

plan, concentrate on executing the plan for some while, then look ahead again.
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